Abstract

A sensitive and rapid method for detecting fluorescent dyes at low concentrations in homogenous solution is experimentally demonstrated. Fluorescent-labeled DNA probes are detected by attaching magnetic beads and applying alternating magnetic field gradient. This condenses the fluorescent probes into a small detection volume and eliminates the scattering noise from solution by synchronous detection. For DNA probes concentration of 1·10-13 M the detection signal was 3.3 times higher than the noise, thereby implying detection sensitivity of 3·10-14 M.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces

Ian D. Block, Patrick C. Mathias, Nikhil Ganesh, Sarah I. Jones, Brian R. Dorvel, Vikram Chaudhery, Lila O. Vodkin, Rashid Bashir, and Brian T. Cunningham
Opt. Express 17(15) 13222-13235 (2009)

Automated bead-trapping apparatus and control system for single-molecule DNA sequencing

Greg Bashford, Don Lamb, Dan Grone, Bob Eckles, Kevin Kornelsen, Lyle Middendorf, and John Williams
Opt. Express 16(5) 3445-3455 (2008)

Automated smFRET microscope for the quantification of label-free DNA oligos

Ran Lin and Yuhong Wang
Biomed. Opt. Express 10(2) 682-693 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. L. M. Poon and Y. M. Dennis Lo, “Circulating fetal DNA in maternal plasma,” Clin. Chim. Acta 313, 151–155 (2001).
    [Crossref] [PubMed]
  2. M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
    [Crossref] [PubMed]
  3. O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
    [Crossref] [PubMed]
  4. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503–1506 (2002).
    [PubMed]
  5. Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
    [Crossref] [PubMed]
  6. J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” J. Am. Chem. Soc. 126, 5932–5933 (2004)
    [Crossref] [PubMed]
  7. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003)
    [Crossref]
  8. J. N. Anker and R. Kopelman, “Magnetically modulated optical nanoprobes,” Appl. Phys. Lett. 82, 1102–1104 (2003)
    [Crossref]
  9. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Singapore2006), Chap. 21.
    [Crossref]
  10. A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
    [Crossref]
  11. M. Tanase, N. Biais, and M. Sheetz, “Magnetic tweezers in cell biology,” Methods Cell Biol. 83, 473–493 (2007).
    [Crossref] [PubMed]
  12. See for example: Molecular Devices, the high-throughput screening benchmark, “Analyst HT datasheet,” http://www.moleculardevices.com/pages/instruments/analyst_ht.html
  13. B. R. Marshal and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [Crossref]
  14. B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
    [Crossref]

2007 (1)

M. Tanase, N. Biais, and M. Sheetz, “Magnetic tweezers in cell biology,” Methods Cell Biol. 83, 473–493 (2007).
[Crossref] [PubMed]

2005 (3)

B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
[Crossref]

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
[Crossref]

2004 (1)

J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” J. Am. Chem. Soc. 126, 5932–5933 (2004)
[Crossref] [PubMed]

2003 (4)

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003)
[Crossref]

J. N. Anker and R. Kopelman, “Magnetically modulated optical nanoprobes,” Appl. Phys. Lett. 82, 1102–1104 (2003)
[Crossref]

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

2002 (1)

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503–1506 (2002).
[PubMed]

2001 (1)

L. L. M. Poon and Y. M. Dennis Lo, “Circulating fetal DNA in maternal plasma,” Clin. Chim. Acta 313, 151–155 (2001).
[Crossref] [PubMed]

1990 (1)

Abarzua, P.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Alsmadi, O. A.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker and R. Kopelman, “Magnetically modulated optical nanoprobes,” Appl. Phys. Lett. 82, 1102–1104 (2003)
[Crossref]

Bao, Y. P.

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Barany, F.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

Biais, N.

M. Tanase, N. Biais, and M. Sheetz, “Magnetic tweezers in cell biology,” Methods Cell Biol. 83, 473–493 (2007).
[Crossref] [PubMed]

Bornarth, C. J.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Brockman, J. P.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Cheng, Y.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

de Vries, A. H. B.

A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
[Crossref]

Dennis Lo, Y. M.

L. L. M. Poon and Y. M. Dennis Lo, “Circulating fetal DNA in maternal plasma,” Clin. Chim. Acta 313, 151–155 (2001).
[Crossref] [PubMed]

Driscoll, M. D.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Du, J.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Du, Y.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Egholm, M.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Farquar, H.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

Faruqi, A. F.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Flandre, D.

B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
[Crossref]

Foultier, B.

B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
[Crossref]

Fromm, D. P.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003)
[Crossref]

Hammer, R. P.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

Hosono, S.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Huber, M.

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Kanger, J. S.

A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
[Crossref]

Kopelman, R.

J. N. Anker and R. Kopelman, “Magnetically modulated optical nanoprobes,” Appl. Phys. Lett. 82, 1102–1104 (2003)
[Crossref]

Krenn, B. E.

A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Singapore2006), Chap. 21.
[Crossref]

Lasken, R. S.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Marla, S. S.

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Marshal, B. R.

Mirkin, C. A.

J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” J. Am. Chem. Soc. 126, 5932–5933 (2004)
[Crossref] [PubMed]

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503–1506 (2002).
[PubMed]

Moerner, W. E.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003)
[Crossref]

Moreno-Hagelsieb, L.

B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
[Crossref]

Muller, U. R.

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Nam, J. M.

J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” J. Am. Chem. Soc. 126, 5932–5933 (2004)
[Crossref] [PubMed]

Park, S. J.

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503–1506 (2002).
[PubMed]

Poon, L. L. M.

L. L. M. Poon and Y. M. Dennis Lo, “Circulating fetal DNA in maternal plasma,” Clin. Chim. Acta 313, 151–155 (2001).
[Crossref] [PubMed]

Remacle, J.

B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
[Crossref]

Sheetz, M.

M. Tanase, N. Biais, and M. Sheetz, “Magnetic tweezers in cell biology,” Methods Cell Biol. 83, 473–493 (2007).
[Crossref] [PubMed]

Smith, R. C.

Song, W.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Soper, S. A.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

Stoeva, S. I.

J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” J. Am. Chem. Soc. 126, 5932–5933 (2004)
[Crossref] [PubMed]

Storhoff, J. J.

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Stryjewski, W.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

Sun, Z.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Tanase, M.

M. Tanase, N. Biais, and M. Sheetz, “Magnetic tweezers in cell biology,” Methods Cell Biol. 83, 473–493 (2007).
[Crossref] [PubMed]

Taton, T. A.

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503–1506 (2002).
[PubMed]

van Driel, R.

A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
[Crossref]

Wabuyele, M. B.

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

Wei, T. F.

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Wisniewski, M.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Wu, X.

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. N. Anker and R. Kopelman, “Magnetically modulated optical nanoprobes,” Appl. Phys. Lett. 82, 1102–1104 (2003)
[Crossref]

Biophys. J. (1)

A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 882137–2144 (2005).
[Crossref]

BMC Genomics (1)

O. A. Alsmadi, C. J. Bornarth, W. Song, M. Wisniewski, J. Du, J. P. Brockman, A. F. Faruqi, S. Hosono, Z. Sun, Y. Du, X. Wu, M. Egholm, P. Abarzua, R. S. Lasken, and M. D. Driscoll, “High accuracy genotyping directly from genomic DNA using rolling circle amplification based assay,” BMC Genomics 4, 21 (2003)
[Crossref] [PubMed]

Clin. Chim. Acta (1)

L. L. M. Poon and Y. M. Dennis Lo, “Circulating fetal DNA in maternal plasma,” Clin. Chim. Acta 313, 151–155 (2001).
[Crossref] [PubMed]

IEE Proc.-Nanobiotechnol. (1)

B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol. 152, 3–12 (2005).
[Crossref]

J. Am. Chem. Soc. (2)

M. B. Wabuyele, H. Farquar, W. Stryjewski, R. P. Hammer, S. A. Soper, Y. Cheng, and F. Barany, “Approaching real-time molecular diagnostics: Single-pair fluorescence resonance transfer (spFRET) detection for the analysis of low abundant point mutation in K-ras oncogenes,” J. Am. Chem. Soc. 125, 6937–6945 (2003).
[Crossref] [PubMed]

J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” J. Am. Chem. Soc. 126, 5932–5933 (2004)
[Crossref] [PubMed]

Methods Cell Biol. (1)

M. Tanase, N. Biais, and M. Sheetz, “Magnetic tweezers in cell biology,” Methods Cell Biol. 83, 473–493 (2007).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

Y. P. Bao, M. Huber, T. F. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, “SNP identification in unamplified human genomic DNA with gold nanoparticle probes,” Nucleic Acids Res. 33, e15 (2005)
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003)
[Crossref]

Science (1)

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503–1506 (2002).
[PubMed]

Other (2)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Singapore2006), Chap. 21.
[Crossref]

See for example: Molecular Devices, the high-throughput screening benchmark, “Analyst HT datasheet,” http://www.moleculardevices.com/pages/instruments/analyst_ht.html

Supplementary Material (1)

» Media 1: MOV (1400 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Illustration of the FRET based synchronous detection assay: (a) a nucleic acid probe is double-labeled with a fluorescent dye and biotin at the 5′ prime and a dark quencher at the 3′ prime. (b) When detection is made, one cycle of PCR separates the dark quencher from the fluorescent dye and fluorescent light is produced. (c) The fluorescent dyes are connected via the biotin to streptavidin-coupled magnetic beads. (d) Each magnetic bead can be attached to thousands of fluorescent labeled probes and can be set in 1-D periodic motion.
Fig. 2.
Fig. 2. (a). Schematic diagram of magnetic modulation system, (b) The magnetic modulation detection system is composed of: (1) two electromagnets, (2) rectangle tube, (3) photomultiplier, (4) long-pass filter.
Fig. 3.
Fig. 3. (a). Magnetic field gradient as a function of the distance from the pole tip, (b) magnetic field at pole tip vs. current.
Fig. 4.
Fig. 4. Magnetic beads attached to different concentrations of fluorescent-labeled oligos: (a) without oligos, (b) ~134 oligos per bead, (c) ~1348 oligos per bead, (d) ~13482 oligos per bead and (e) ~134824 oligos per bead.
Fig. 5.
Fig. 5. Magnetic beads moving in and out of the laser beam spot: (a) magnetic beads only, (b) magnetic beads entering the laser beam, (c) (multimedia online) aggregation of the magnetic beads (Media 1).
Fig. 6.
Fig. 6. PMT Power vs. fluorescent-labeled oligos concentration: (a) using a 75 µliter tube, (b) using a 270 µliter tube.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F m = m · ( B )
B ( r ) = 4 · μ 0 · M m · β ( 4 · β · r + 1 ) 2
C = 4 π · 100 · 0 · 0001 · σ W · C W Q Y · σ AF 488 · Ω
W emission = W absorption · Q Y = σ · P h · v · A · Q Y 133 , 951 photons sec
C = N N a · V = 1 6 . 022 · 10 23 · 75 · 10 6 = 2 · 10 20 M

Metrics