Abstract

In this work we determine the third, fifth- and seventh-order nonresonant nonlinear optical properties of silver nanoparticles (9nm average diameter) colloids in aqueous solution under high intensity excitation. The nonlinear optical response and its dependence with the nanoparticles filling factor was measured and theoretically described. We show that for low inclusion concentration, the third order nonlinearity of the colloid can be described by the generalized Maxwell-Garnett model. With the increase of the nanoparticle concentration, changes in the medium nonlinearities was observed leading to high order effects. The fifth- and seventh- order susceptibilities were obtained for highly concentrated silver nanoparticle colloid and the data was supported by a theoretical model. The conventional Z-scan technique was employed, using 80 f s laser pulses at 800nm, in a regime of high pulse energy (µJ) and low repetition rate (1kHz).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, "Plasmonics in Biology and Plasmon-controlled Fluorescence," Plasmonics 1, 5-33 (2006).
    [CrossRef] [PubMed]
  2. D. Rativa, A. S. L. Gomes, S. Wachsmann-Hogiu, D. L. Farkas, and R. E. de Araujo, "Nonlinear Excitation of Tryptophan Emission Enhanced by Silver Nanoparticles," J. Fluoresc. DOI. 10.1007/s10895-008-0366-6, (2008).
  3. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, "Multiphoton plasmon-resonance microscopy," Opt. Express 11, 1385-1391 (2003).
    [CrossRef] [PubMed]
  4. C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).
  5. E. L. Falcão-Filho, CidB. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, "Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon dissulfide,"J. Opt. Soc. Am. B 22, 2444-2449 (2005).
    [CrossRef]
  6. M. H. G. Miranda, E. L. Falcão-Filho, J. J. RodriguesJr, CidB. de Araújo, and L. H. Acioli, "Ultrafast lightinduced dichroism in silver nanoparticles,"Phys. Rev. B 70, 161401-161404 (2006).
    [CrossRef]
  7. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
    [CrossRef]
  8. R. A. Ganeev and A. I. Ryasnyansky, "Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,"Appl. Phys. B 84, 295-302 (2006).
    [CrossRef]
  9. J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
    [CrossRef]
  10. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, "Non resonant third-order nonlinearity of nanometric and subnanometric silver particles in aqueous solution," J. Nanosci. Nanotechnol DOI. 10.1166/jnn.2008.416, (2008).
  11. E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, Jr., "High-order nonlinearities of aqueous colloids containing silver nanoparticles," J. Opt. Soc. Am. B 24, 2948-2956 (2007).
    [CrossRef]
  12. P. C. Lee and D. Meisel,"Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
    [CrossRef]
  13. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  14. P. B. Johnson and R. W. Christy, "Optical constants of noble metals,"Phys. Rev. B,  6, 4370-4379 (1972).
    [CrossRef]
  15. G. Mie,"Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,"Leipzig, Ann. Phys. 330, 377-445 (1908).
    [CrossRef]
  16. W. C. Huang and L. J. Tzeng,"Quantum size effect on the optical properties of small metallic particles,"Phys. Rev. B. 49, 17279-17285 (1994).
    [CrossRef]
  17. J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
    [CrossRef] [PubMed]
  18. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal glass composites," J. Opt. Soc. Am. B 20, 1227-1232 (2003).
    [CrossRef]
  19. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
    [CrossRef]
  20. N. C. Kothari, "Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains," Phys. Rev. A 41, 4486-4492 (1990).
    [CrossRef] [PubMed]
  21. D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," J. Appl. Math 11, 431-441 (1963).

2007 (3)

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, Jr., "High-order nonlinearities of aqueous colloids containing silver nanoparticles," J. Opt. Soc. Am. B 24, 2948-2956 (2007).
[CrossRef]

2006 (3)

M. H. G. Miranda, E. L. Falcão-Filho, J. J. RodriguesJr, CidB. de Araújo, and L. H. Acioli, "Ultrafast lightinduced dichroism in silver nanoparticles,"Phys. Rev. B 70, 161401-161404 (2006).
[CrossRef]

J. R. Lakowicz, "Plasmonics in Biology and Plasmon-controlled Fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

R. A. Ganeev and A. I. Ryasnyansky, "Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,"Appl. Phys. B 84, 295-302 (2006).
[CrossRef]

2005 (1)

2004 (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

2003 (2)

1994 (1)

W. C. Huang and L. J. Tzeng,"Quantum size effect on the optical properties of small metallic particles,"Phys. Rev. B. 49, 17279-17285 (1994).
[CrossRef]

1992 (2)

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

1990 (2)

N. C. Kothari, "Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains," Phys. Rev. A 41, 4486-4492 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1982 (1)

P. C. Lee and D. Meisel,"Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of noble metals,"Phys. Rev. B,  6, 4370-4379 (1972).
[CrossRef]

1963 (1)

D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," J. Appl. Math 11, 431-441 (1963).

1908 (1)

G. Mie,"Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,"Leipzig, Ann. Phys. 330, 377-445 (1908).
[CrossRef]

Baba, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

Chari, R.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
[CrossRef]

Cheng, Y.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of noble metals,"Phys. Rev. B,  6, 4370-4379 (1972).
[CrossRef]

Cid, E. L.

Cid, J. J.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. RodriguesJr, CidB. de Araújo, and L. H. Acioli, "Ultrafast lightinduced dichroism in silver nanoparticles,"Phys. Rev. B 70, 161401-161404 (2006).
[CrossRef]

de Araújo, C. B.

Falcão-Filho, E. L.

Fu, Y.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

Ganeev, R. A.

R. A. Ganeev and A. I. Ryasnyansky, "Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,"Appl. Phys. B 84, 295-302 (2006).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Hagan, D. J.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Hamanaka, Y.

Hayashi, N.

Huang, W. C.

W. C. Huang and L. J. Tzeng,"Quantum size effect on the optical properties of small metallic particles,"Phys. Rev. B. 49, 17279-17285 (1994).
[CrossRef]

Jayabalan, J.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of noble metals,"Phys. Rev. B,  6, 4370-4379 (1972).
[CrossRef]

Kothari, N. C.

N. C. Kothari, "Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains," Phys. Rev. A 41, 4486-4492 (1990).
[CrossRef] [PubMed]

Kuroda, H.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, "Plasmonics in Biology and Plasmon-controlled Fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel,"Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

Marquardt, D.

D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," J. Appl. Math 11, 431-441 (1963).

Meisel, D.

P. C. Lee and D. Meisel,"Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

Mie, G.

G. Mie,"Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,"Leipzig, Ann. Phys. 330, 377-445 (1908).
[CrossRef]

Miranda, M. H. G.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. RodriguesJr, CidB. de Araújo, and L. H. Acioli, "Ultrafast lightinduced dichroism in silver nanoparticles,"Phys. Rev. B 70, 161401-161404 (2006).
[CrossRef]

Moses, E.

Nakamura, A.

Oak, S. M.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
[CrossRef]

Omi, S.

Oron, D.

Rodrigues, J. J.

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, Jr., "High-order nonlinearities of aqueous colloids containing silver nanoparticles," J. Opt. Soc. Am. B 24, 2948-2956 (2007).
[CrossRef]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. RodriguesJr, CidB. de Araújo, and L. H. Acioli, "Ultrafast lightinduced dichroism in silver nanoparticles,"Phys. Rev. B 70, 161401-161404 (2006).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev and A. I. Ryasnyansky, "Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,"Appl. Phys. B 84, 295-302 (2006).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Said, A. A.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Sheik-Bahae, M.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Silberberg, Y.

Singh, A.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
[CrossRef]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

Suzuki, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Thiberge, S.

Tzeng, L. J.

W. C. Huang and L. J. Tzeng,"Quantum size effect on the optical properties of small metallic particles,"Phys. Rev. B. 49, 17279-17285 (1994).
[CrossRef]

Van Stryland, E. W

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

Van Stryland, E.W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wang, C.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

Wang, J.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

Wei, T. H.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Xu, Z.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

Yelin, D.

Young, J.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

Zhou, Z.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

Ann. Phys. (1)

G. Mie,"Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,"Leipzig, Ann. Phys. 330, 377-445 (1908).
[CrossRef]

Appl. Phys. B (1)

R. A. Ganeev and A. I. Ryasnyansky, "Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,"Appl. Phys. B 84, 295-302 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, "Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,"Appl. Phys. Lett. 90, 181119, 1-4 (2007).

J. Appl. Math (1)

D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," J. Appl. Math 11, 431-441 (1963).

J. Opt. Soc. Am. B (3)

J. Opt. Soc. Am. B. (1)

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B. 9, 405-414 (1992).
[CrossRef]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel,"Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

Nanotechnology (1)

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, "Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,"Nanotechnology 18, 315704-315710 (2007).
[CrossRef]

Opt. Commun. (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda,"Characterization of optical and nonlinear silver nanoparticles prepared by laser ablation in various liquids,"Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

N. C. Kothari, "Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains," Phys. Rev. A 41, 4486-4492 (1990).
[CrossRef] [PubMed]

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, "Optical constants of noble metals,"Phys. Rev. B,  6, 4370-4379 (1972).
[CrossRef]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. RodriguesJr, CidB. de Araújo, and L. H. Acioli, "Ultrafast lightinduced dichroism in silver nanoparticles,"Phys. Rev. B 70, 161401-161404 (2006).
[CrossRef]

Phys. Rev. B. (1)

W. C. Huang and L. J. Tzeng,"Quantum size effect on the optical properties of small metallic particles,"Phys. Rev. B. 49, 17279-17285 (1994).
[CrossRef]

Plasmonics (1)

J. R. Lakowicz, "Plasmonics in Biology and Plasmon-controlled Fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland,"Sensitive measurements of optical nonlinearities using a single beam,"Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Other (2)

D. Rativa, A. S. L. Gomes, S. Wachsmann-Hogiu, D. L. Farkas, and R. E. de Araujo, "Nonlinear Excitation of Tryptophan Emission Enhanced by Silver Nanoparticles," J. Fluoresc. DOI. 10.1007/s10895-008-0366-6, (2008).

D. Rativa, R. E. de Araujo, and A. S. L. Gomes, "Non resonant third-order nonlinearity of nanometric and subnanometric silver particles in aqueous solution," J. Nanosci. Nanotechnol DOI. 10.1166/jnn.2008.416, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption spectrum of the colloidal silver nanoparticle (Sample thickness:2mm). The inset in each figure illustrates the particles size distribution.

Fig. 2.
Fig. 2.

Closed-aperture (a) and open-aperture (b) z-scan traces obtained at 800nm for different filling factors f (laser peak intensity 0.18TW/cm2 ). The curves correspond to f=1.5×10-6, f=2.4×10-6, f=4.3×10-6, and f=5.8×10-6.

Fig. 3.
Fig. 3.

Experimental values for nonlinear refractive index n2 (a) and nonlinear absorption α2 (b), as a function of filling fraction f for the 9nm colloidal silver nanoparticle.

Fig. 4.
Fig. 4.

Intensity dependence of the ratio ΔT/I, for the nonlinear refraction (a-d) and nonlinear absorption (a1-d1). The solid lines corresponding to the theoretical fitting using the Kothari model [20]. The filling fractions are f=3.0×10-5 (a), f=5.0×10-5 (b), f=8.5×10-5 (c) and f=14.5×10-5 (d).

Tables (1)

Tables Icon

Table 1. Values of the real and imaginary part of the colloids for different filling factors, f, obtained from the experimental values shown in Fig.(4)

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ε eff ( Linear ) = ε h ( 1 + 3 β f 1 β f )
β = ε NP ε h ε NP + 2 ε h
χ eff ( 3 ) = f χ NP ( 3 ) P 2 P 2 + χ h ( 3 )
χ eff ( 3 ) = f ( C 1 + i C 2 ) χ NP ( 3 ) + χ h ( 3 )
n 2 = 3 4 n 0 Re χ eff ( 3 ) = 3 4 n 0 [ f ( C 1 Re χ NP ( 3 ) C 2 Im χ NP ( 3 ) ) χ NP ( 3 ) + Re χ h ( 3 ) ]
α 2 = 3 ω 2 c n 0 Im χ eff ( 3 ) = 3 ω 2 c n 0 [ f ( C 1 Im χ NP ( 3 ) C 2 Re χ NP ( 3 ) ) χ NP ( 3 ) + Im χ h ( 3 ) ]
Δ T = 0,406 Δ ϕ 0
Δ Φ 0 = 2 π λ n 2 I L eff
Δ T = ( 2 ) 3 2 α 2 L eff I
Δ Φ 0 ( 3 ) = 2 π λ n 2 I 0 [ 1 exp ( α 0 L ) α 0 ] ,
Δ Φ 0 ( 5 ) = 2 π λ n 4 I 0 2 [ 1 exp ( 2 α 0 L ) 2 α 0 ] ,
Δ Φ 0 ( 7 ) = 2 π λ n 6 I 0 3 [ 1 exp ( 3 α 0 L ) 3 α 0 ] .
Δ T = ( 2 ) 3 2 L eff ( α 2 + α 4 I 0 + α 6 I 0 2 ) I 0 .
ε eff = ε eff ( Linear ) + 4 π χ eff ( 3 ) P 2 E Local 2 1 + a 0 E Local 2
ε eff = ε eff ( Linear ) + 4 π χ eff ( 3 ) E 2 + 4 π χ ¯ ( 5 ) ( E 2 ) 2 + 4 π χ ¯ ( 7 ) ( E 2 ) 3 ,
χ ¯ ( 5 ) = η 0 χ eff ( 3 ) ; η 0 = 1 P 2 [ 2 a 0 + a 0 * ] ,
χ ¯ ( 7 ) = ( η 1 + η 0 2 ) χ eff ( 3 ) , η 1 = 1 P 4 [ a 0 2 + ( a 0 * ) 2 + a 0 2 ] .
ε total = ε eff ( Linear ) + 4 π χ eff ( 3 ) E 2 + 4 π ( χ ¯ ( 5 ) + χ eff ( 5 ) ) ( E 2 ) 2 + 4 π χ ¯ ( 7 ) ( E 2 ) 3 ,
χ eff ( 5 ) = f χ NP ( 5 ) P 2 P 4
( n 2 m 2 W ) = 3 4 ε 0 n 0 2 c Re [ χ ( 3 ) ] , α 2 ( m W ) = 3 ω 2 ε 0 n 0 2 c 2 Im [ χ ( 3 ) ] ,
n 4 ( m 4 W 2 ) = 5 4 ε 0 3 n 0 3 c 3 Re [ χ ( 5 ) ] , α 4 ( m 3 W 2 ) = 5 ω 2 ε 0 2 n 0 3 c 3 Im [ χ ( 5 ) ] , χ ( 5 ) = χ ¯ ( 5 ) + χ eff ( 5 )
n 6 ( m 6 W 3 ) = 35 16 ε 0 3 n 0 4 c 3 Re [ χ ( 7 ) ] , α 6 ( m 5 W 3 ) = 35 ω 8 ε 0 3 n 0 4 c 4 Im [ χ ( 7 ) ] , χ ( 7 ) = χ ¯ ( 7 ) .

Metrics