Abstract

An incoherent broad-band cavity-enhanced absorption (IBB-CEA) set-up was used in combination with a Fourier-transform (FT) spectrometer in order to explore the potential of this technique for high-resolution molecular spectroscopy in the near-infrared region. Absorption spectra of overtone bands of CO2, OCS, and HD18O were measured between 5800 and 7000 cm−1 using a small sampling volume (1100 cm3, based on a 90 cm cavity length). The quality of the spectra in this study is comparable to that obtained with Fourier transform spectrometers employing standard multi-pass reflection cells, which require substantially larger sampling volumes. High-resolution methods such as FT-IBB-CEAS also provide an elegant way to determine effective mirror reflectivities (Reff, i.e. a measure of the inherent overall cavity loss) by using a calibration gas with well-known line strengths. For narrow absorption features and non-congested spectra this approach does not even require a zero-absorption measurement with the empty cavity. Absolute cross-sections or line strengths of a target species can also be determined in one single measurement, if gas mixtures with known partial pressures are used. This feature of FT-IBB-CEAS reduces systematic errors significantly; it is illustrated based on CO2 as calibration gas.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59,2544-2551 (1988).
    [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
    [CrossRef]
  3. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19,565-607 (2000).
    [CrossRef]
  4. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83,975-999 (2005).
    [CrossRef]
  5. J. J. Scherer, J. B. Paul, H. Jiao, and A. O'Keefe, "Broadband ringdown spectral photography," Appl. Opt. 40,6725-6732 (2001).
    [CrossRef]
  6. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
    [CrossRef]
  7. S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103,5239-5262 (2003).
    [CrossRef] [PubMed]
  8. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006).
    [CrossRef] [PubMed]
  9. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 ?m," Opt. Lett. 32,307-309 (2007).
    [CrossRef] [PubMed]
  10. T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10,1033-1042 (2002).
    [PubMed]
  11. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16,2387-2397 (2008).
    [CrossRef] [PubMed]
  12. T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
    [CrossRef]
  13. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003).
    [CrossRef]
  14. S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004).
    [CrossRef]
  15. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
    [CrossRef] [PubMed]
  16. J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006).
    [CrossRef] [PubMed]
  17. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
    [CrossRef] [PubMed]
  18. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
    [CrossRef] [PubMed]
  19. M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
    [CrossRef]
  20. S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
    [CrossRef]
  21. R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
    [CrossRef]
  22. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16,10178-10188 (2008).
    [CrossRef] [PubMed]
  23. P. S. Johnston and K. K. Lehmann, "Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source," Opt. Express 16,15013-15023 (2008).
    [CrossRef] [PubMed]
  24. C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
    [CrossRef]
  25. K. Strong, T. J. Johnson, and G. W. Harris, "Visible intracavity laser spectroscopy with a step-scan Fourier-transform interferometer," Appl. Opt. 36,8533-8540 (1997).
    [CrossRef]
  26. J. X. Cheng, H. Lin, S. M. Hu, S. G. He, Q. S. Zhu, and A. Kachanov, "Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer," Appl. Opt. 39,2221-2229 (2000).
    [CrossRef]
  27. S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
    [CrossRef]
  28. N. Picqué, G. Guelachvili, and A. Kachanov, "High-sensitivity time-resolved intracavity laser Fourier transform spectroscopy with vertical-cavity surface-emitting multiple-quantum-well lasers," Opt. Lett. 28,313-315 (2003).
    [CrossRef] [PubMed]
  29. R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67,2708-2713 (1996).
    [CrossRef]
  30. E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002).
    [CrossRef]
  31. A. A. Ruth, J. Orphal, and S. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broad-band light source," Appl. Opt. 46,3611-3617 (2007).
    [CrossRef] [PubMed]
  32. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15,11385-11395 (2007).
    [CrossRef] [PubMed]
  33. Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
    [CrossRef]
  34. D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
    [CrossRef]
  35. C. E. Miller and L. R. Brown, "Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions," J. Mol. Spectrosc. 228,329-354 (2004).
    [CrossRef]
  36. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
    [CrossRef]
  37. C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001).
    [CrossRef] [PubMed]
  38. Y. He and B. J. Orr, "Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules," Appl. Opt. 44,6752-6761 (2005).
    [CrossRef] [PubMed]
  39. M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
    [CrossRef]
  40. R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).
  41. M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
    [CrossRef]
  42. D.  Lisak and J. T.  Hodges, "High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions," Appl. Phys. B 88,317-325 (2007).
    [CrossRef]
  43. N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
    [CrossRef]
  44. E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
    [CrossRef] [PubMed]
  45. A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
    [CrossRef]
  46. P. Chelin, A. A. Ruth, and J. Orphal, "High-resolution absorption spectra and analysis of the overtone bands of HD18O in the 6100-6900 cm-1 region," J. Mol. Spectrosc. (in preparation).
  47. P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
    [CrossRef]
  48. P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
    [CrossRef]

2008 (11)

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
[CrossRef] [PubMed]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16,10178-10188 (2008).
[CrossRef] [PubMed]

P. S. Johnston and K. K. Lehmann, "Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source," Opt. Express 16,15013-15023 (2008).
[CrossRef] [PubMed]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16,2387-2397 (2008).
[CrossRef] [PubMed]

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
[CrossRef]

2007 (4)

2006 (6)

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006).
[CrossRef] [PubMed]

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
[CrossRef]

2005 (5)

Y. He and B. J. Orr, "Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules," Appl. Opt. 44,6752-6761 (2005).
[CrossRef] [PubMed]

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83,975-999 (2005).
[CrossRef]

2004 (3)

C. E. Miller and L. R. Brown, "Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions," J. Mol. Spectrosc. 228,329-354 (2004).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004).
[CrossRef]

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

2003 (4)

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003).
[CrossRef]

S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
[CrossRef]

N. Picqué, G. Guelachvili, and A. Kachanov, "High-sensitivity time-resolved intracavity laser Fourier transform spectroscopy with vertical-cavity surface-emitting multiple-quantum-well lasers," Opt. Lett. 28,313-315 (2003).
[CrossRef] [PubMed]

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103,5239-5262 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10,1033-1042 (2002).
[PubMed]

E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002).
[CrossRef]

2001 (4)

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

J. J. Scherer, J. B. Paul, H. Jiao, and A. O'Keefe, "Broadband ringdown spectral photography," Appl. Opt. 40,6725-6732 (2001).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
[CrossRef]

C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001).
[CrossRef] [PubMed]

2000 (2)

1998 (2)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
[CrossRef]

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67,2708-2713 (1996).
[CrossRef]

1992 (1)

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

1988 (1)

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59,2544-2551 (1988).
[CrossRef]

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
[CrossRef]

Ball, S. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006).
[CrossRef] [PubMed]

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004).
[CrossRef]

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103,5239-5262 (2003).
[CrossRef] [PubMed]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
[CrossRef]

Balslev-Clausen, D.

Baranov, Y. I.

N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Belafhal, A.

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19,565-607 (2000).
[CrossRef]

Bermejo, D.

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Bitter, M.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
[CrossRef]

Boudjaadar, D.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

C. E. Miller and L. R. Brown, "Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions," J. Mol. Spectrosc. 228,329-354 (2004).
[CrossRef]

Brown, S. S.

R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
[CrossRef]

Brubach, J.-B.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Calvani, P.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Campargue, A.

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Cermak, P.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Chance, K. V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Chelin, P.

N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
[CrossRef]

P. Chelin, A. A. Ruth, and J. Orphal, "High-resolution absorption spectra and analysis of the overtone bands of HD18O in the 6100-6900 cm-1 region," J. Mol. Spectrosc. (in preparation).

Cheng, J. X.

Chou, C.-C.

C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001).
[CrossRef] [PubMed]

Chubar, O.

P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
[CrossRef]

Dana, V.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

De Marzia, G.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59,2544-2551 (1988).
[CrossRef]

Delolmo, A.

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

Depiesse, C.

S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Dixneuf, S.

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

Domingo, C.

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

Engeln, R.

E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002).
[CrossRef]

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67,2708-2713 (1996).
[CrossRef]

Escribano, R.

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

Eslami, E.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

Fayt, A.

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

Fiedler, S.

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003).
[CrossRef]

Filabozzia, A.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Fuchs, H.

R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Gerschel, A.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Gherman, T.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10,1033-1042 (2002).
[PubMed]

Giura, P.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Guelachvili, G.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

N. Picqué, G. Guelachvili, and A. Kachanov, "High-sensitivity time-resolved intracavity laser Fourier transform spectroscopy with vertical-cavity surface-emitting multiple-quantum-well lasers," Opt. Lett. 28,313-315 (2003).
[CrossRef] [PubMed]

Hamers, E.

E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002).
[CrossRef]

Harris, G. W.

Hartmann, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

He, S. G.

He, Y.

Heitmann, U.

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

Herman, M.

S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
[CrossRef]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003).
[CrossRef]

Hodges, J. T.

D.  Lisak and J. T.  Hodges, "High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions," Appl. Phys. B 88,317-325 (2007).
[CrossRef]

Hu, S. M.

Hu, S.-M.

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

Hudson, D. D.

Hult, J.

Hurtmans, D.

S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
[CrossRef]

Ibrahim, N.

N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Jiao, H.

Johnson, T. J.

Johnston, P. S.

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006).
[CrossRef] [PubMed]

Jones, R. L.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16,10178-10188 (2008).
[CrossRef] [PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006).
[CrossRef] [PubMed]

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004).
[CrossRef]

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103,5239-5262 (2003).
[CrossRef] [PubMed]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Kachanov, A.

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83,975-999 (2005).
[CrossRef]

Kaminski, C. F.

Kassi, S.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
[CrossRef]

Kirchner, M. S.

Langford, A. O.

R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
[CrossRef]

Langridge, J. M.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16,10178-10188 (2008).
[CrossRef] [PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006).
[CrossRef] [PubMed]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004).
[CrossRef]

Lasri, J.

Laurila, T.

Lehmann, K. K.

Lin, H.

Lin, T.

C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001).
[CrossRef] [PubMed]

Lisak, D.

D.  Lisak and J. T.  Hodges, "High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions," Appl. Phys. B 88,317-325 (2007).
[CrossRef]

Liu, A.-W.

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

Lupi, S.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Macko, P.

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

Majcherova, Z.

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Mandin, J.-Y.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Marcouillé, O.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Massie, S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19,565-607 (2000).
[CrossRef]

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67,2708-2713 (1996).
[CrossRef]

Méjean, G.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

Mermet, A.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Miller, C. E.

C. E. Miller and L. R. Brown, "Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions," J. Mol. Spectrosc. 228,329-354 (2004).
[CrossRef]

Moll, K. D.

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 ?m," Opt. Lett. 32,307-309 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006).
[CrossRef] [PubMed]

Naïm, S.

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

Naumenko, O.

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
[CrossRef]

Norton, E. G.

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
[CrossRef]

Nucara, A.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59,2544-2551 (1988).
[CrossRef]

O'Keefe, A.

Orphal, J.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
[CrossRef] [PubMed]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
[CrossRef]

A. A. Ruth, J. Orphal, and S. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broad-band light source," Appl. Opt. 46,3611-3617 (2007).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

P. Chelin, A. A. Ruth, and J. Orphal, "High-resolution absorption spectra and analysis of the overtone bands of HD18O in the 6100-6900 cm-1 region," J. Mol. Spectrosc. (in preparation).

Orr, B. J.

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
[CrossRef]

Orza, J. M.

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83,975-999 (2005).
[CrossRef]

Paolone, A.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Paul, J. B.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19,565-607 (2000).
[CrossRef]

Perevalov, V. I.

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Picqué, N.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

N. Picqué, G. Guelachvili, and A. Kachanov, "High-sensitivity time-resolved intracavity laser Fourier transform spectroscopy with vertical-cavity surface-emitting multiple-quantum-well lasers," Opt. Lett. 28,313-315 (2003).
[CrossRef] [PubMed]

Povey, I. M.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
[CrossRef]

Qi, Z.

P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
[CrossRef]

Rbaihi, E.

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

Régalia-Jarlot, L.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Romanini, D.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10,1033-1042 (2002).
[PubMed]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Roy, P.

P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
[CrossRef]

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Rozières, M.

P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
[CrossRef]

Ruth, A. A.

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
[CrossRef] [PubMed]

A. A. Ruth, J. Orphal, and S. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broad-band light source," Appl. Opt. 46,3611-3617 (2007).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003).
[CrossRef]

P. Chelin, A. A. Ruth, and J. Orphal, "High-resolution absorption spectra and analysis of the overtone bands of HD18O in the 6100-6900 cm-1 region," J. Mol. Spectrosc. (in preparation).

Ruth, A. A.

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

Sadeghi, N.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006).
[CrossRef] [PubMed]

Scherer, J. J.

Schlosser, E.

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

Schram, D.

E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002).
[CrossRef]

Shy, J.-T.

C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001).
[CrossRef] [PubMed]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Song, K.-F.

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

Strong, K.

Tashkun, S. A.

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

Teffo, J.-L.

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

Thomas, X.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

Thorpe, M. J.

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Triki, M.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

Vander Auwera, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Varma, R.

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

Varma, R. M.

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

Vaughan, S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
[CrossRef] [PubMed]

Venables, D. S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

Vervloet, M.

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Vial, J-C.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

Von Der Heyden, P.

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

Voronin, B.

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Washenfelder, R. A.

R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
[CrossRef]

Watt, R. S.

Wenger, J. C.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
[CrossRef]

Ye, J.

Zhu, Q. S.

Analyst (1)

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006).
[CrossRef] [PubMed]

Appl. Opt. (6)

Appl. Phys. B (3)

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

D.  Lisak and J. T.  Hodges, "High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions," Appl. Phys. B 88,317-325 (2007).
[CrossRef]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008).
[CrossRef]

Atm. Chem. Phys. Discuss. (2)

S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008).
[CrossRef]

R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008).
[CrossRef]

Atmos. Chem. Phys. (1)

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83,975-999 (2005).
[CrossRef]

Chem. Phys. Lett. (4)

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001).
[CrossRef]

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004).
[CrossRef]

E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002).
[CrossRef]

Chem. Rev. (1)

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103,5239-5262 (2003).
[CrossRef] [PubMed]

Environ. Sci. Technol. (2)

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006).
[CrossRef] [PubMed]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008).
[CrossRef] [PubMed]

Infrar. Phys. Technol. (1)

P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19,565-607 (2000).
[CrossRef]

J. Chem. Phys. (1)

C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998).
[CrossRef]

J. Mol. Spectrosc. (7)

Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005).
[CrossRef]

D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006).
[CrossRef]

C. E. Miller and L. R. Brown, "Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions," J. Mol. Spectrosc. 228,329-354 (2004).
[CrossRef]

C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001).
[CrossRef] [PubMed]

E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998).
[CrossRef] [PubMed]

A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006).
[CrossRef]

P. Chelin, A. A. Ruth, and J. Orphal, "High-resolution absorption spectra and analysis of the overtone bands of HD18O in the 6100-6900 cm-1 region," J. Mol. Spectrosc. (in preparation).

J. Phys. D (1)

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004).
[CrossRef]

J. Quant. Spectr. Rad. Transfer (1)

N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005).
[CrossRef]

Mol. Phys. (1)

S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59,2544-2551 (1988).
[CrossRef]

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67,2708-2713 (1996).
[CrossRef]

Science (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of the experimental set-up. Mirrors M1 and M2 are high-reflectivity mirrors forming an optical cavity. Lenses L1 and L2 are used to focus the light into the cavity and into an optical fiber, respectively.

Fig. 2.
Fig. 2.

High-resolution spectrum of CO2 in the near IR obtained using an optical cavity in conjunction with a Fourier-transform spectrometer (a.u. = arbitrary units of intensity). The upper trace (shifted upwards for clarity) shows the spectrum of the empty cavity, the lower trace shows the spectrum obtained with 26.7 mbar of CO2 in the cavity. The acquisition time is 90 min, the spectral resolution is 0.02 cm−1. The inset in the left upper corner shows a weak overtone band (30011-00001) of CO2 centered at 6503.08 cm−1, and the inset in the right upper corner shows the P(18) line in this band to illustrate the signal-to-noise ratio, the spectral resolution, and the symmetry of the instrumental line shape.

Fig. 3.
Fig. 3.

(a) Intensity, I0 , transmitted by the empty cavity; the broad spectral structure is a result of the wavelength dependent lamp spectrum, filter function, reflectivity and detector response (a.u. = arbitrary units of intensity). (b) Effective reflectivity of the mirrors (see text below for the definition of Reff ) determined using 75 of the CO2 lines in the panels below. (c) The integrated line intensities of the calibration gas, Scal , from the HITRAN database. (d) Measured absorption spectrum plotted as fractional intensity change. Note that with increasing Reff (i.e. towards higher wavenumbers) the CO2 bands in panel (d) appear to be stronger than in panel (c). This is due to the increased effective optical path length in the cavity at higher effective Reff . The effective absorption pathlength is ca. 33 m at 6200 cm−1, 58 m at 6350 cm−1, 180 m at ~6500 cm−1, and 370 m at ~6680 cm−1.

Fig. 4.
Fig. 4.

Small section of the high-resolution spectrum shown in Fig. 2 and Fig. 3. The upper trace shows the observed spectrum of the CO2 (11121–00001) band [33]. The lower trace is a calculated spectrum using CO2 line parameters from the HITRAN database (0.02 cm−1 FWHM). The strong lines that are not reproduced in the modeled spectrum are due to residual water vapor in the interferometer. The effective optical path length is ca. 350 m corresponding to an effective reflectivity of about 0.9974. The inset shows a Lorentzian fit (solid line) of absorption line Q(18) (solid circles) in this hot band at 6677.97 cm−1 (dotted vertical line) used in the calculation of Reff . The limits of the integral in Eq. (1) are given by the first tick (ν̃0=6677.90 cm−1) and last tick (ν̃0ν̃=6678.05 cm−1) of the inset’s wavenumber axis.

Fig. 5.
Fig. 5.

High-resolution spectrum of OCS obtained using an optical cavity together with a Fourier-transform spectrometer. The upper trace (shifted upwards for clarity) shows the spectrum of the empty cavity, the lower trace shows the spectrum obtained with 26.7 mbar of OCS in the cavity. The recording time is 540 min, the spectral resolution is 0.02 cm−1. The inset in the left upper corner shows the weak 3020-0000 overtone band of OCS with band edge at about 6649.83 cm−1 [44].

Fig. 6.
Fig. 6.

High-resolution spectrum of a mixture of 8.0 mbar of D2O and 12.4 mbar of pure H2 18O in the optical cavity recorded with a spectral resolution of 0.02 cm−1. The upper trace (shifted upwards for clarity) shows the spectrum of the empty cavity, the lower trace shows the spectrum obtained with the isotopic water mixture in the cavity. The recording time was 540 min, the spectral resolution was 0.02 cm−1. The inset in the left upper corner shows the region from 6747 to 6757 cm−1. More than 4700 absorption lines are observed in the 6000-7000 cm−1 region, many of them are due to the rare water isotope HD18O. The horizontal dotted ‘zero’-line demonstrates that below ca. 6800 cm−1 the absorption lines are not saturated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R eff ( v ˜ max ) = 1 d × P cal k T × S cal ( v ˜ max ) v ˜ 0 v ˜ 0 + Δ v ˜ ( I ̄ 0 ( Δ v ˜ ) I cal ( v ˜ ) 1 ) d v ˜ .
σ ( v ˜ ) = ( k T P ) ( 1 R eff ( v ˜ ) d ) ( I ̄ 0 ( Δ v ˜ ) I ( v ˜ ) 1 ) .

Metrics