Abstract

We assess the scaling potential of high repetition rate, passively mode-locked erbium-doped soliton lasers. Our analysis focuses on three recently demonstrated lasers using saturable Bragg reflectors (SBR) as the mode-locking element. We use the soliton Area theorem to establish the limitations to increasing the repetition rate based on insufficient intracavity pulse energy, SBR properties, and dispersion engineering. Finally, we examine possible approaches to alleviate these limitations by changing the laser’s structure and composition.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber

Fumio Shohda, Takafumi Shirato, Masataka Nakazawa, Kyoji Komatsu, and Toshikuni Kaino
Opt. Express 16(26) 21191-21198 (2008)

440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber

Toshihiko Hirooka, Kazunari Tokuhira, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(21) 24255-24264 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Yamamoto, K. R. Tamura, and M. Nakazawa, “1.28 Tbit/s - 70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics and Communications in Japan (Part I: Communications) 86, 68–79 (2003).
    [Crossref]
  2. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 um wavelength excitation,” Appl. Phys. Lett. 86, 051104–3 (2005).
    [Crossref]
  3. C. Janke, M. Först, M. Nagel, and H. Kurz, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30, 1405–1407 (2005).
    [Crossref] [PubMed]
  4. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  5. H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett. 7, 270–273 (1965).
    [Crossref]
  6. P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169–262 (1995).
    [Crossref]
  7. H. A. Haus, “Mode-Locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [Crossref]
  8. F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995).
    [Crossref] [PubMed]
  9. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
    [Crossref]
  10. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [Crossref]
  11. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32, 1566–1568 (2007).
    [Crossref] [PubMed]
  12. M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
    [Crossref]
  13. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
    [Crossref] [PubMed]
  14. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High repetition rate, 489 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
    [Crossref] [PubMed]
  15. J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)
  16. H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).
  17. F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
    [Crossref]
  18. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Optics Express 14, 1797–1803 (2006)
    [Crossref] [PubMed]
  19. A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
    [Crossref]
  20. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007).
    [Crossref] [PubMed]
  21. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  22. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31, 1295–1297 (2006).
    [Crossref] [PubMed]
  23. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

2008 (1)

2007 (4)

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32, 1566–1568 (2007).
[Crossref] [PubMed]

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
[Crossref]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (3)

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 um wavelength excitation,” Appl. Phys. Lett. 86, 051104–3 (2005).
[Crossref]

C. Janke, M. Först, M. Nagel, and H. Kurz, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30, 1405–1407 (2005).
[Crossref] [PubMed]

2004 (1)

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

2003 (1)

T. Yamamoto, K. R. Tamura, and M. Nakazawa, “1.28 Tbit/s - 70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics and Communications in Japan (Part I: Communications) 86, 68–79 (2003).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

2000 (1)

H. A. Haus, “Mode-Locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

1996 (1)

1995 (2)

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

1991 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

1965 (1)

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett. 7, 270–273 (1965).
[Crossref]

Aggarwal, D.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Optics Express 14, 1797–1803 (2006)
[Crossref] [PubMed]

Agrawal, G. P.

Byun, H.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High repetition rate, 489 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Charrier, J.

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

Chen, J.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High repetition rate, 489 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32, 1566–1568 (2007).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

Collins, R. J.

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett. 7, 270–273 (1965).
[Crossref]

de Sterke, C. M.

DiCarolis, S.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

Eggleton, B. J.

Fluck, R.

Först, M.

Foster, M. A.

Frantz, J. A.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Optics Express 14, 1797–1803 (2006)
[Crossref] [PubMed]

French, P. M. W.

P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169–262 (1995).
[Crossref]

Frolov, S.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Gaeta, A. L.

Golling, M.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Grange, R.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Griebner, U.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
[Crossref]

Haiml, M.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Haji, L.

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

Hanjani, A.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus, “Mode-Locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Ippen, E. P.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High repetition rate, 489 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32, 1566–1568 (2007).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Janke, C.

Jiang, S.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

Kärtner, F. X.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High repetition rate, 489 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32, 1566–1568 (2007).
[Crossref] [PubMed]

F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Keller, U.

Kopf, D.

Krainer, L.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Kurz, H.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

Lamont, M. R.

Lin, Q.

Lipson, M.

Liverini, V.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Lorrain, N.

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

Lum, P.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

Manolatou, C.

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

Miller, J. N.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

Mocker, H. W.

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett. 7, 270–273 (1965).
[Crossref]

Moenster, M.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
[Crossref]

Moser, M.

Nagel, M.

Najar, A.

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

Nakazawa, M.

T. Yamamoto, K. R. Tamura, and M. Nakazawa, “1.28 Tbit/s - 70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics and Communications in Japan (Part I: Communications) 86, 68–79 (2003).
[Crossref]

Oueslati, M.

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

Patel, F. D.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

Pudo, D.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High repetition rate, 489 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[Crossref] [PubMed]

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

Richter, W.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
[Crossref]

Sanghera, J. S.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Optics Express 14, 1797–1803 (2006)
[Crossref] [PubMed]

Schmidt, B. S.

Schön, S.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Sharping, J. E.

Shaw, L. B.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Optics Express 14, 1797–1803 (2006)
[Crossref] [PubMed]

Shmulovich, J.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Sickler, J. W.

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32, 1566–1568 (2007).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

Spühler, G. J.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Steinmeyer, G.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
[Crossref]

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 um wavelength excitation,” Appl. Phys. Lett. 86, 051104–3 (2005).
[Crossref]

Tamura, K. R.

T. Yamamoto, K. R. Tamura, and M. Nakazawa, “1.28 Tbit/s - 70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics and Communications in Japan (Part I: Communications) 86, 68–79 (2003).
[Crossref]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 um wavelength excitation,” Appl. Phys. Lett. 86, 051104–3 (2005).
[Crossref]

Turner, A. C.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Venkatesh, S.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

Weingarten, K. J.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Yamamoto, T.

T. Yamamoto, K. R. Tamura, and M. Nakazawa, “1.28 Tbit/s - 70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics and Communications in Japan (Part I: Communications) 86, 68–79 (2003).
[Crossref]

Yin, L.

Zhang, G.

Appl. Phys. (1)

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 8127–32, (2005).

Appl. Phys. Lett. (3)

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 um,” Appl. Phys. Lett. 91, 121120–3 (2007).
[Crossref]

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett. 7, 270–273 (1965).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 um wavelength excitation,” Appl. Phys. Lett. 86, 051104–3 (2005).
[Crossref]

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[Crossref]

Electronics and Communications in Japan (Part I: Communications) (1)

T. Yamamoto, K. R. Tamura, and M. Nakazawa, “1.28 Tbit/s - 70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics and Communications in Japan (Part I: Communications) 86, 68–79 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43, 174–180 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-Locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609, (2004).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Optics Express (1)

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Optics Express 14, 1797–1803 (2006)
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169–262 (1995).
[Crossref]

Other (2)

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser,” Ultrafast Phenomena XIV: Proceedings of the 16th International Conference, Stresa (Lago Maggiore), Italy, June 9–13, 2008 (Springer Series in Chemical Physics), 727–729 (2008)

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “Integrated, low-jitter, 400 MHz femtosecond waveguide laser,” to be presented at the LEOS Annual Meting (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the laser model
Fig. 2.
Fig. 2. Reflectance and dispersion of the SBR.
Fig. 2.
Fig. 2. (a) Soliton peak power and (b) resulting pulse width as a function of the repetition rate for different SBR dispersion values. Dots indicate soliton modelocking failure points, while arrows indicate experimentally demonstrated values.
Fig. 3.
Fig. 3. (a) Soliton peak power and (b) resulting pulse width as a function of the repetition rate for different intracavity losses assuming a -750 fs2 dispersion contribution from the SBR.
Fig. 5.
Fig. 5. (a) Soliton peak power and (b) resulting pulse width as a function of the repetition rate for different SBR dispersion values. Dots indicate soliton modelocking failure points, while arrows indicate experimentally demonstrated values.
Fig. 6.
Fig. 6. Integrated laser layout. Inset depicts the dispersion and reflectance of the SBR.
Fig. 7.
Fig. 7. (a) Soliton peak power and (b) total intracavity dispersion as a function of the repetition rate for different SBR dispersion values.

Tables (5)

Tables Icon

Tables 1-4; List of parameters characterizing the laser

Tables Icon

Tables 5-7; Estimated parameters of the 491 MHz soliton laser.

Tables Icon

Tables 8-10; Estimated parameters of the 3 GHz soliton laser

Tables Icon

Tables 11-14; Estimted parameters of the waveguide soliton laser.

Tables Icon

Table 15. Optical properties of silica, arsenic trisulfide, and silicon glass waveguide around 1.55 um.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P cav = P sat ( g 0 · L G ln ( 1 + α L ) 1 )
A ( t ) = P peak sech ( t τ 0 )
P peak = P cav τ · f R
P cav A eff f r = 4 D δ τ 0 = 4 · 1.76 · 1 2 β 2 δ τ 4 β 2 · λ 2 π n 2 · τ .

Metrics