Abstract

Computational image restoration finds wide applicability for fluorescence intensity imaging. Relatively little work in this regard has been performed on FLIM images, which also suffer from diminished spatial resolution. In this work, we report two separate approaches to enhance FLIM image quality while maintaining lifetime accuracy. A 2D-image restoration algorithm was employed to improve resolution in gated intensity images of various samples including fluorescent beads, living cells and fixed tissue samples. The restoration approach improved lifetime image quality without significant variation in lifetime. Further, overlaying a restored-intensity image over the native lifetime image provided even better results, where the resulting lifetime map had spatial features similar to the intensity map. 2D and 3D image restoration also benefit from advances in computational power and hence holds potential for enhancing FLIM resolution, particularly in ICCD-based wide-field FLIM systems, without sacrificing vital quantitative information.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chang, D. Sud, and M. A. Mycek, "Fluorescense lifetime imagining microscopy," Methods Cell Bio. 81, 495-524 (2007).
    [CrossRef]
  2. Y. Chen and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003).
    [CrossRef] [PubMed]
  3. I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008).
    [CrossRef] [PubMed]
  4. D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
    [CrossRef] [PubMed]
  5. D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, "Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models," Opt. Express 14, 4412-4426 (2006).
    [CrossRef] [PubMed]
  6. K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
    [CrossRef] [PubMed]
  7. P. C. Goodwin, "Evaluating optical aberration using fluorescent microspheres: methods, analysis, and corrective actions," Methods Cell Biol. 81, 397-413 (2007).
    [CrossRef] [PubMed]
  8. H. R. Petty, "Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology," Microsc. Res. Tech. 70, 687-709 (2007).
    [CrossRef] [PubMed]
  9. M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
    [CrossRef]
  10. T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
    [CrossRef] [PubMed]
  11. P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
    [CrossRef]
  12. W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003).
    [CrossRef]
  13. W. Zhong, M. Wu, C.-W. Chang, K. A. Merrick, S. D. Merajver, and M. A. Mycek, "Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET," Opt. Express 15, 18220-18235 (2007).
    [CrossRef] [PubMed]
  14. E. Pietka and H. K. Huang, "Correction of Aberration in Image-Intensifier Systems," Computerized Medical Imaging and Graphics 16, 253-258 (1992).
    [CrossRef] [PubMed]
  15. M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
    [CrossRef] [PubMed]
  16. A. Squire and P. I. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Microsc. 193, 36-49 (1999).
    [CrossRef] [PubMed]
  17. J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001).
    [CrossRef] [PubMed]
  18. Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
    [CrossRef]
  19. P. Pankajakshan, B. Zhang, L. Blanc-Feraud, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, "Parametric blind deconvolution for confocal laser scanning microscopy," Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 6532-6535 (2007).
    [PubMed]
  20. J. B. Sibarita, "Deconvolution microscopy," Adv. Biochem. Eng. Biotechnol. 95, 201-243 (2005).
    [PubMed]
  21. B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004).
    [CrossRef] [PubMed]
  22. J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1062-1071 (2001).
    [CrossRef] [PubMed]
  23. P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999).
    [CrossRef]
  24. J. Siegel, D. S. Elson, S. E. Webb, K. C. Lee, A. Vlandas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
    [CrossRef] [PubMed]
  25. J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
    [CrossRef] [PubMed]
  26. J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
    [CrossRef] [PubMed]

2008 (2)

I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008).
[CrossRef] [PubMed]

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

2007 (6)

W. Zhong, M. Wu, C.-W. Chang, K. A. Merrick, S. D. Merajver, and M. A. Mycek, "Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET," Opt. Express 15, 18220-18235 (2007).
[CrossRef] [PubMed]

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

C. W. Chang, D. Sud, and M. A. Mycek, "Fluorescense lifetime imagining microscopy," Methods Cell Bio. 81, 495-524 (2007).
[CrossRef]

P. C. Goodwin, "Evaluating optical aberration using fluorescent microspheres: methods, analysis, and corrective actions," Methods Cell Biol. 81, 397-413 (2007).
[CrossRef] [PubMed]

H. R. Petty, "Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology," Microsc. Res. Tech. 70, 687-709 (2007).
[CrossRef] [PubMed]

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, "Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models," Opt. Express 14, 4412-4426 (2006).
[CrossRef] [PubMed]

T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
[CrossRef] [PubMed]

2005 (1)

J. B. Sibarita, "Deconvolution microscopy," Adv. Biochem. Eng. Biotechnol. 95, 201-243 (2005).
[PubMed]

2004 (1)

B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004).
[CrossRef] [PubMed]

2003 (5)

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003).
[CrossRef]

Y. Chen and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003).
[CrossRef] [PubMed]

J. Siegel, D. S. Elson, S. E. Webb, K. C. Lee, A. Vlandas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
[CrossRef] [PubMed]

J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
[CrossRef] [PubMed]

2001 (3)

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001).
[CrossRef] [PubMed]

J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1062-1071 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (3)

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999).
[CrossRef]

A. Squire and P. I. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Microsc. 193, 36-49 (1999).
[CrossRef] [PubMed]

1992 (1)

E. Pietka and H. K. Huang, "Correction of Aberration in Image-Intensifier Systems," Computerized Medical Imaging and Graphics 16, 253-258 (1992).
[CrossRef] [PubMed]

Alvarez, F.

Anderson, K. I.

I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008).
[CrossRef] [PubMed]

Appleton, P. L.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
[CrossRef] [PubMed]

Ashworth, H.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

Bastiaens, P. I.

A. Squire and P. I. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Microsc. 193, 36-49 (1999).
[CrossRef] [PubMed]

Beamish, J. A.

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Becker, W.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Beer, D. G.

Bergmann, A.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Birckner, E.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Boutet de Monvel, J.

J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001).
[CrossRef] [PubMed]

Cai, Y. Y.

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

Chang, C. W.

C. W. Chang, D. Sud, and M. A. Mycek, "Fluorescense lifetime imagining microscopy," Methods Cell Bio. 81, 495-524 (2007).
[CrossRef]

Chang, C.-W.

Chen, Y.

Y. Chen and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003).
[CrossRef] [PubMed]

Cole, M. J.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Conchello, J. A.

J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1062-1071 (2001).
[CrossRef] [PubMed]

Dayel, M. J.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

de Monvel, J. B.

J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
[CrossRef] [PubMed]

Demas, J. N.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

Dmitrovsky, E.

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Dowling, K.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Dragnev, K. H.

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Elson, D. S.

French, P. M.

Gambaruto, G. L.

Garini, Y.

B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004).
[CrossRef] [PubMed]

Gemkow, M. J.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999).
[CrossRef]

Goodwin, P. C.

P. C. Goodwin, "Evaluating optical aberration using fluorescent microspheres: methods, analysis, and corrective actions," Methods Cell Biol. 81, 397-413 (2007).
[CrossRef] [PubMed]

Guan, Y. Q.

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

Hammer, M.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Huang, H. K.

E. Pietka and H. K. Huang, "Correction of Aberration in Image-Intensifier Systems," Computerized Medical Imaging and Graphics 16, 253-258 (1992).
[CrossRef] [PubMed]

Imasaka, T.

T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
[CrossRef] [PubMed]

Jentsch, S.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Jones, R.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Jovin, T. M.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999).
[CrossRef]

Juskaitis, R.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Kawanabe, S.

T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
[CrossRef] [PubMed]

Konig, I.

I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008).
[CrossRef] [PubMed]

Le Calvez, S.

J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
[CrossRef] [PubMed]

J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001).
[CrossRef] [PubMed]

Lee, K. C.

Lee, Y. T.

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

Leveque-Fort, S.

Lever, M. J.

Maeda, Y.

T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
[CrossRef] [PubMed]

Markham, J.

J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1062-1071 (2001).
[CrossRef] [PubMed]

Merajver, S. D.

Merrick, K. A.

Mills, J. D.

Y. Chen and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003).
[CrossRef] [PubMed]

Minn, F. K.

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Murray, J. M.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
[CrossRef] [PubMed]

Mycek, M. A.

W. Zhong, M. Wu, C.-W. Chang, K. A. Merrick, S. D. Merajver, and M. A. Mycek, "Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET," Opt. Express 15, 18220-18235 (2007).
[CrossRef] [PubMed]

C. W. Chang, D. Sud, and M. A. Mycek, "Fluorescense lifetime imagining microscopy," Methods Cell Bio. 81, 495-524 (2007).
[CrossRef]

D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, "Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models," Opt. Express 14, 4412-4426 (2006).
[CrossRef] [PubMed]

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003).
[CrossRef]

Neil, M. A.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Opas, M.

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

Parsons-Karavassilis, D.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Periasamy, A.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

Petty, H. R.

H. R. Petty, "Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology," Microsc. Res. Tech. 70, 687-709 (2007).
[CrossRef] [PubMed]

Pietka, E.

E. Pietka and H. K. Huang, "Correction of Aberration in Image-Intensifier Systems," Computerized Medical Imaging and Graphics 16, 253-258 (1992).
[CrossRef] [PubMed]

Sandison, A.

Scarfone, E.

J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
[CrossRef] [PubMed]

Schenke, S.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Schwarz, J. P.

I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008).
[CrossRef] [PubMed]

Schweitzer, D.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Schweitzer, F.

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Sharman, K. K.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

Sibarita, J. B.

J. B. Sibarita, "Deconvolution microscopy," Adv. Biochem. Eng. Biotechnol. 95, 201-243 (2005).
[PubMed]

Siegel, J.

Sloboda, R. D.

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Snow, N. H.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

Squire, A.

A. Squire and P. I. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Microsc. 193, 36-49 (1999).
[CrossRef] [PubMed]

Stamp, G. W.

Sucharov, L. O.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Sud, D.

Swedlow, J. R.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
[CrossRef] [PubMed]

Tadrous, P. J.

Uchimura, T.

T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
[CrossRef] [PubMed]

Ulfendahl, M.

J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
[CrossRef] [PubMed]

J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001).
[CrossRef] [PubMed]

Urayama, P.

W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003).
[CrossRef]

Urayama, P. K.

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Vermolen, B. J.

B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004).
[CrossRef] [PubMed]

Verveer, P. J.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999).
[CrossRef]

Vlandas, A.

Wallace, A. L.

Waters, J. C.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
[CrossRef] [PubMed]

Watson, T. F.

Webb, S. E.

Wilson, T.

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
[CrossRef]

Wu, M.

Young, I. T.

B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004).
[CrossRef] [PubMed]

Zhang, X.

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

Zhong, W.

W. Zhong, M. Wu, C.-W. Chang, K. A. Merrick, S. D. Merajver, and M. A. Mycek, "Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET," Opt. Express 15, 18220-18235 (2007).
[CrossRef] [PubMed]

D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, "Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models," Opt. Express 14, 4412-4426 (2006).
[CrossRef] [PubMed]

W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003).
[CrossRef]

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Adv. Biochem. Eng. Biotechnol. (1)

J. B. Sibarita, "Deconvolution microscopy," Adv. Biochem. Eng. Biotechnol. 95, 201-243 (2005).
[PubMed]

Anal. Chem. (1)

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999).
[CrossRef] [PubMed]

Anal. Sci. (1)

T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006).
[CrossRef] [PubMed]

App. Phys. B: Lasers Opt. (1)

P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (2)

J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003).
[CrossRef] [PubMed]

J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001).
[CrossRef] [PubMed]

Computerized Medical Imaging and Graphics (1)

E. Pietka and H. K. Huang, "Correction of Aberration in Image-Intensifier Systems," Computerized Medical Imaging and Graphics 16, 253-258 (1992).
[CrossRef] [PubMed]

Differentiation (1)

Y. Chen and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003).
[CrossRef] [PubMed]

Eur. J. Cell. Biol. (1)

I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008).
[CrossRef] [PubMed]

J. Microsc. (4)

M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

A. Squire and P. I. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Microsc. 193, 36-49 (1999).
[CrossRef] [PubMed]

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007).
[CrossRef] [PubMed]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999).
[CrossRef]

J. Opt. Soc. Am. A. Opt. Image Sci. Vis. (1)

J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1062-1071 (2001).
[CrossRef] [PubMed]

J. Phys. D-Appl. Phys. (1)

W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003).
[CrossRef]

Methods Cell Bio. (1)

C. W. Chang, D. Sud, and M. A. Mycek, "Fluorescense lifetime imagining microscopy," Methods Cell Bio. 81, 495-524 (2007).
[CrossRef]

Methods Cell Biol. (1)

P. C. Goodwin, "Evaluating optical aberration using fluorescent microspheres: methods, analysis, and corrective actions," Methods Cell Biol. 81, 397-413 (2007).
[CrossRef] [PubMed]

Microsc. Res. Tech. (4)

H. R. Petty, "Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology," Microsc. Res. Tech. 70, 687-709 (2007).
[CrossRef] [PubMed]

D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007).
[CrossRef] [PubMed]

Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008).
[CrossRef]

B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

P. Pankajakshan, B. Zhang, L. Blanc-Feraud, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, "Parametric blind deconvolution for confocal laser scanning microscopy," Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 6532-6535 (2007).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of lateral smearing, or haze, with an image-intensified CCD camera. (a) Blue fluorescence from a fixed mouse intestine section imaged with a CCD alone. (b) Same region when imaged with an ICCD. The demagnification due to the lens-coupling between the intensifier and CCD (=2.17) is evident in the image. (c) Red rectangular region from (b) magnified to show the smearing effect. The excitation source for all images was a mercury lamp.

Fig. 2.
Fig. 2.

FLIM Setup. Abbreviations: CCD=charge-coupled device; HRI=high rate imager; INT=intensifier; TTL I/O=TTL input/output card; OD=optical discriminator; BS=beam splitter; DC=dichroic mirror; FM=“flippable” mirror; L1, L2, L3, L4=quartz lenses; M=mirror. Thick solid lines=light path; thin solid line=electronic path.

Fig. 3.
Fig. 3.

N(I)=Native fluorescence intensity image. N(τ)=Native fluorescence lifetime image. R(I)=Restored intensity image. R(τ)=Restored lifetime image. OI(τ)=Intensity-overlay lifetime image.

Fig. 4.
Fig. 4.

Native intensity, native lifetime, restored lifetime and intensity-overlay lifetime images for various samples. 1 µm and 10 µm spheres, living cells were imaged with a 100x objective.

Fig. 5.
Fig. 5.

Native intensity, native lifetime, restored lifetime and intensity-overlay lifetime images for a fixed mouse intestine section imaged with a 10x objective.

Tables (1)

Tables Icon

Table 1. Parameter Setting for Image Restoration

Metrics