Abstract

The combination of fiber Bragg grating inscription with femtosecond laser sources and the usage of the Talbot interferometer setup not only gives access to the fabrication of Bragg gratings in new types of materials but also allows, at the same time, to keep the high flexibility of an interferometric setup in choosing the Bragg grating wavelength. Since the spatial and temporal coherence properties of the femtosecond laser source differ strongly from those of conventional laser sources, specific limits and tolerances in the interferometric setup have to be considered. Such limits are investigated on the basis of an analytical ray tracing model. The results are applied to tolerance measurements of fiber Bragg grating reflections recorded with a DUV sub-picosecond laser source at 262 nm. Additionally we demonstrate the wavelength versatility of the two-beam interferometer setup for femtosecond inscription over a 40 nm wavelength band. Inscription experiments in Al/Yb doped silica glasses are demonstrated as a prove for the access to non-photosensitive fibers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Smelser, S. J. Mihailov, D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
    [CrossRef] [PubMed]
  2. D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).
  3. K. A. Zagorulko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovsky, E. M. Dianov, S. V. Chekalin, Y.A. Matveets, V. O. Kompanets, "Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation," Opt. Express 12, 5996-6001 (2004).
    [CrossRef] [PubMed]
  4. L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
    [CrossRef]
  5. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
    [CrossRef] [PubMed]
  6. G. Violakis, S. Georgiou, M. Konstantaki, S. Pissadakis, "A comparative study on the type IIA photosensitivity of a B/Ge optical fiber using ultraviolet, femtosecond radiation," Bragg Grating, Photosensivity and Poling in Glass Waveguides BGPP 2007, Quebec, JWA59
  7. L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
    [CrossRef]
  8. C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
    [CrossRef]
  9. S. Pissadakis, L. Reekie, "An elliptical Talbot interferometer for fiber Bragg grating fabrication," Rev. Sci. Instrum. 76, 066101 (2005)
    [CrossRef]
  10. M. L. Dockney, S. W. James, R. P. Tatam, "Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
    [CrossRef]
  11. Y. Wang, J. Grant, A. Sharma, G. Myers, "Modified Talbot interferometer for fabrication of fiberoptic grating filter over a wide range of Bragg wavelength and bandwidth using a single phase mask, " J. Lightwave Technol. 19, 1569-1573 (2001).
    [CrossRef]
  12. M. Rothhardt, C. Chojetzki, H.-R. M¨uller, "High mechanical strength single-pulse draw tower gratings," Proc. SPIE 5579, 127-135 (2004).
    [CrossRef]
  13. J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
    [CrossRef]
  14. P. E. Dyer, R. J. Farley, R. Giedl, "Analysis and application of a O/1 order Talbot interferometer for 193 nm laser grating formation," Opt. Commun. 129, 98-108 (1996).
    [CrossRef]
  15. E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
    [CrossRef]
  16. G. Meltz, W. W. Morey, W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  17. A. Reuther, A. Laubereau, D. N. Nikogosyan, "A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions," Opt. Commun. 141, 180-184 (1997)
    [CrossRef]
  18. J. C. Diels, W. Rudolph, "Ultrashort laser pulse phenomena," (Academic, 1996).
  19. E. Wikszak, J. Thomas, J. Burgho_, B. Orta¸c, J. Limpert, S. Nolte, U. Fuchs, A. T¨unnermann, "Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating," Opt. Lett. 31, 2390-2392 (2006).
    [CrossRef] [PubMed]

2008 (1)

E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
[CrossRef]

2007 (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).

2006 (2)

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

E. Wikszak, J. Thomas, J. Burgho_, B. Orta¸c, J. Limpert, S. Nolte, U. Fuchs, A. T¨unnermann, "Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating," Opt. Lett. 31, 2390-2392 (2006).
[CrossRef] [PubMed]

2005 (3)

C. W. Smelser, S. J. Mihailov, D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

S. Pissadakis, L. Reekie, "An elliptical Talbot interferometer for fiber Bragg grating fabrication," Rev. Sci. Instrum. 76, 066101 (2005)
[CrossRef]

2004 (2)

2003 (2)

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
[CrossRef]

2001 (1)

1998 (1)

L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

1997 (1)

A. Reuther, A. Laubereau, D. N. Nikogosyan, "A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions," Opt. Commun. 141, 180-184 (1997)
[CrossRef]

1996 (2)

M. L. Dockney, S. W. James, R. P. Tatam, "Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, "Analysis and application of a O/1 order Talbot interferometer for 193 nm laser grating formation," Opt. Commun. 129, 98-108 (1996).
[CrossRef]

1989 (1)

Bartelt, H.

E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
[CrossRef]

Becker, M.

E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
[CrossRef]

Bolger, J. A.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Chekalin, S. V.

Chojetzki, C.

M. Rothhardt, C. Chojetzki, H.-R. M¨uller, "High mechanical strength single-pulse draw tower gratings," Proc. SPIE 5579, 127-135 (2004).
[CrossRef]

Dianov, E. M.

Ding, H.

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).

Ding, S.

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

Dockney, M. L.

M. L. Dockney, S. W. James, R. P. Tatam, "Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Dragomir, A.

Dyer, P. E.

P. E. Dyer, R. J. Farley, R. Giedl, "Analysis and application of a O/1 order Talbot interferometer for 193 nm laser grating formation," Opt. Commun. 129, 98-108 (1996).
[CrossRef]

Eggleton, B. J.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, R. Giedl, "Analysis and application of a O/1 order Talbot interferometer for 193 nm laser grating formation," Opt. Commun. 129, 98-108 (1996).
[CrossRef]

Fu, L.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Giedl, R.

P. E. Dyer, R. J. Farley, R. Giedl, "Analysis and application of a O/1 order Talbot interferometer for 193 nm laser grating formation," Opt. Commun. 129, 98-108 (1996).
[CrossRef]

Glenn, W. H.

Grant, J.

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).

C. W. Smelser, S. J. Mihailov, D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

James, S. W.

M. L. Dockney, S. W. James, R. P. Tatam, "Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Jiang, J.

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

Kompanets, V. O.

Kryukov, P. G.

Larionov, Y. V.

Laubereau, A.

A. Reuther, A. Laubereau, D. N. Nikogosyan, "A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions," Opt. Commun. 141, 180-184 (1997)
[CrossRef]

Li, C.

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
[CrossRef]

Lin, T.

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

Lindner, E.

E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
[CrossRef]

M¨agi, E. C.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

M¨uller, H.-R.

M. Rothhardt, C. Chojetzki, H.-R. M¨uller, "High mechanical strength single-pulse draw tower gratings," Proc. SPIE 5579, 127-135 (2004).
[CrossRef]

Marshall, G. D.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Matveets, Y.A.

Meltz, G.

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).

C. W. Smelser, S. J. Mihailov, D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

Morey, W. W.

Myers, G.

Nikogosyan, D. N.

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Reuther, A. Laubereau, D. N. Nikogosyan, "A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions," Opt. Commun. 141, 180-184 (1997)
[CrossRef]

Pissadakis, S.

S. Pissadakis, L. Reekie, "An elliptical Talbot interferometer for fiber Bragg grating fabrication," Rev. Sci. Instrum. 76, 066101 (2005)
[CrossRef]

Reekie, L.

S. Pissadakis, L. Reekie, "An elliptical Talbot interferometer for fiber Bragg grating fabrication," Rev. Sci. Instrum. 76, 066101 (2005)
[CrossRef]

Reuther, A.

A. Reuther, A. Laubereau, D. N. Nikogosyan, "A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions," Opt. Commun. 141, 180-184 (1997)
[CrossRef]

Rothhardt, M.

E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
[CrossRef]

M. Rothhardt, C. Chojetzki, H.-R. M¨uller, "High mechanical strength single-pulse draw tower gratings," Proc. SPIE 5579, 127-135 (2004).
[CrossRef]

Rybaltovsky, A. A.

Sharma, A.

Skuja, L.

L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).

C. W. Smelser, S. J. Mihailov, D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

Steinvurzel, P. E.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Sun, J.

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

Tatam, R. P.

M. L. Dockney, S. W. James, R. P. Tatam, "Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Thomas, J.

Tian, X.-F.

C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
[CrossRef]

Wang, Y.

Wikszak, E.

Withford, M. J.

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Xiong, B.-H.

C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
[CrossRef]

Zagorulko, K. A.

Zhang, Y.

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

Zhang, Y.- M.

C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
[CrossRef]

Electron. Lett. (1)

L. Fu, G. D. Marshall, J. A. Bolger, P. E. Steinvurzel, E. C. M¨agi, M. J. Withford, B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Front. Electron. Eng. China (1)

J. Jiang, T. Lin, Y. Zhang, C. Li, J. Sun, S. Ding, "The turning error e_ect of reflectors in the Talbot interferometer used for writing fiber Bragg grating," Front. Electron. Eng. China 1, 53-57 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

M. L. Dockney, S. W. James, R. P. Tatam, "Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Opt. Commun. (3)

P. E. Dyer, R. J. Farley, R. Giedl, "Analysis and application of a O/1 order Talbot interferometer for 193 nm laser grating formation," Opt. Commun. 129, 98-108 (1996).
[CrossRef]

E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, "Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range," Opt. Commun. 281, 4612-4615 (2008).
[CrossRef]

A. Reuther, A. Laubereau, D. N. Nikogosyan, "A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions," Opt. Commun. 141, 180-184 (1997)
[CrossRef]

Opt. Eng. (1)

C. Li, Y.- M. Zhang, X.-F. Tian, B.-H. Xiong, "Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths," Opt. Eng. 42, 3452-3455 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (2)

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, "Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators amd evanescent fiber tapers," Proc. SPIE 6796, 6796J (2007).

M. Rothhardt, C. Chojetzki, H.-R. M¨uller, "High mechanical strength single-pulse draw tower gratings," Proc. SPIE 5579, 127-135 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Pissadakis, L. Reekie, "An elliptical Talbot interferometer for fiber Bragg grating fabrication," Rev. Sci. Instrum. 76, 066101 (2005)
[CrossRef]

Other (2)

G. Violakis, S. Georgiou, M. Konstantaki, S. Pissadakis, "A comparative study on the type IIA photosensitivity of a B/Ge optical fiber using ultraviolet, femtosecond radiation," Bragg Grating, Photosensivity and Poling in Glass Waveguides BGPP 2007, Quebec, JWA59

J. C. Diels, W. Rudolph, "Ultrashort laser pulse phenomena," (Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Interferometer scheme for analytical analysis.

Fig. 2.
Fig. 2.

Interference patterns may be obtained in general in the diamond-shaped overlap area of both interfering beams. Limitations in spatial and temporal coher- ence further limit the extensions 2Δz max (fiber position tolerance) and 2Δx max (achievable grating length) of the coherence area applicable for the inscription of Bragg gratings.

Fig. 3.
Fig. 3.

Setup for the two-beam interferometric inscription setup with a Talbot interferometer

Fig. 4.
Fig. 4.

Bragg grating strength versus fiber position in z-axis

Fig. 5.
Fig. 5.

Bragg grating strength versus angular tilt Δϕ of the mirrors. The upper x-axis corresponds to the optical path difference in femtoseconds.

Fig. 6.
Fig. 6.

Autocorrelation measurement via two-photon absorption in KCl with the laser system from fig. 3

Fig. 7.
Fig. 7.

FBG array with seven gratings to demonstrate the wavelength versatility of the Talbot interferometric inscription setup in combination with a DUV femtosecond laser source.

Fig. 8.
Fig. 8.

Grating inscription in a non-hydrogenated Ge-free Al/Yb doped fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin α = λ laser Λ pm
Θ = α + 2 ϕ .
sin ( Θ ) = n eff λ laser λ Bragg ,
l x = O 1 O 2 ¯ = 2 Δ z sin ( Θ ) cos ( α ) .
l t = O A O ' ¯ O B O ' ¯ = 2 Δ x sin ( 2 ϕ ) cos ( α ) .
OPD = 4 O M ¯ × tan ( α ) cos ( α + 2 ϕ ) Δ ϕ ,

Metrics