Abstract

We report spectroscopic and bulk laser performance characteristics for Tm3+-doped tellurite glasses when used as gain media operating around 1.9 µm. Two glass hosts studied are TZN and TZNG and their performances have been compared. In each case, well-characterized cw laser performance was obtained and this has been related to detailed spectroscopic measurements of the important lasing parameters of the laser transitions around 1900 nm when pumped at 793 nm. The maximum output power achieved was 124 mW from the TZNG sample with an associated slope efficiency of 28 % with a tuning range of 135 nm. Efficiency and loss analyses yielded a calculated maximum attainable efficiency of 48 % in Tm3+:TZN compared to 28 % for the TZNG host.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
    [CrossRef] [PubMed]
  2. A. J. Marks and J. M. H. Teichman, "Lasers in clinical urology: state of the art and new horizons," World J. Urol. 25, 227-233 (2007).
    [CrossRef] [PubMed]
  3. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
    [CrossRef] [PubMed]
  4. K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285-290 (2004).
    [CrossRef]
  5. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, "Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 ?m," Opt. Lett. 32, 2040-2042 (2007).
    [CrossRef] [PubMed]
  6. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
    [CrossRef]
  7. A. Godard, "Infrared (2-12 ?m) solid-state laser sources: a review," C. R. Phys. 8, 1100-1128 (2007).
    [CrossRef]
  8. G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
    [CrossRef]
  9. J. S. Wang, E. M. Vogel and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
    [CrossRef]
  10. D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. B 136, 954-957 (1964).
    [CrossRef]
  11. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
    [CrossRef]
  12. R. Balda, J. Fernández, S. García-Revilla, and J. M. Fernández-Navarro, "Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass," Opt. Express 15, 6750-6761 (2007).
    [CrossRef] [PubMed]
  13. A. Jha, S. Shen and M. Naftaly, "Structural origin of spectral broadening of 1.5-?m emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
    [CrossRef]
  14. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
    [CrossRef]
  15. S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 ?m Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
    [CrossRef]
  16. R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive-index measurements of glasses using three-wave frequency mixing," J. Opt. Soc. Am. B 4, 875-881 (1987).
    [CrossRef]

2007 (5)

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

A. J. Marks and J. M. H. Teichman, "Lasers in clinical urology: state of the art and new horizons," World J. Urol. 25, 227-233 (2007).
[CrossRef] [PubMed]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, "Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 ?m," Opt. Lett. 32, 2040-2042 (2007).
[CrossRef] [PubMed]

A. Godard, "Infrared (2-12 ?m) solid-state laser sources: a review," C. R. Phys. 8, 1100-1128 (2007).
[CrossRef]

R. Balda, J. Fernández, S. García-Revilla, and J. M. Fernández-Navarro, "Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass," Opt. Express 15, 6750-6761 (2007).
[CrossRef] [PubMed]

2004 (3)

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285-290 (2004).
[CrossRef]

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 ?m Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

2003 (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
[CrossRef]

2000 (1)

A. Jha, S. Shen and M. Naftaly, "Structural origin of spectral broadening of 1.5-?m emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
[CrossRef]

1994 (1)

J. S. Wang, E. M. Vogel and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

1987 (1)

1964 (1)

D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. B 136, 954-957 (1964).
[CrossRef]

Adair, R.

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

Balda, R.

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Camy, P.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive-index measurements of glasses using three-wave frequency mixing," J. Opt. Soc. Am. B 4, 875-881 (1987).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Demirata, B.

G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
[CrossRef]

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

Fernández, J.

Fernández-Navarro, J. M.

Galzerano, G.

García-Revilla, S.

Genç, A.

G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
[CrossRef]

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

Godard, A.

A. Godard, "Infrared (2-12 ?m) solid-state laser sources: a review," C. R. Phys. 8, 1100-1128 (2007).
[CrossRef]

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285-290 (2004).
[CrossRef]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285-290 (2004).
[CrossRef]

Jackson, S. D.

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 ?m Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

Jha, A.

A. Jha, S. Shen and M. Naftaly, "Structural origin of spectral broadening of 1.5-?m emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
[CrossRef]

Knobloch, T.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Kruschat, T.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Laporta, P.

Ludwig, H. C.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Marks, A. J.

A. J. Marks and J. M. H. Teichman, "Lasers in clinical urology: state of the art and new horizons," World J. Urol. 25, 227-233 (2007).
[CrossRef] [PubMed]

McCumber, D. E.

D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. B 136, 954-957 (1964).
[CrossRef]

Ménard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Moncorgé, R.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

Naftaly, M.

A. Jha, S. Shen and M. Naftaly, "Structural origin of spectral broadening of 1.5-?m emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
[CrossRef]

Öveçoglu, M. L.

G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
[CrossRef]

Özen, G.

G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
[CrossRef]

Parisi, D.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive-index measurements of glasses using three-wave frequency mixing," J. Opt. Soc. Am. B 4, 875-881 (1987).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Rohde, V.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Rostasy, K.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285-290 (2004).
[CrossRef]

Shen, S.

A. Jha, S. Shen and M. Naftaly, "Structural origin of spectral broadening of 1.5-?m emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Teichman, J. M. H.

A. J. Marks and J. M. H. Teichman, "Lasers in clinical urology: state of the art and new horizons," World J. Urol. 25, 227-233 (2007).
[CrossRef] [PubMed]

Teichmann, H.-O.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Tonelli, M.

Vogel, E. M.

J. S. Wang, E. M. Vogel and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

C. R. Phys. (1)

A. Godard, "Infrared (2-12 ?m) solid-state laser sources: a review," C. R. Phys. 8, 1100-1128 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase and W. F. Krupke, "Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285-290 (2004).
[CrossRef]

Neurosurg. Rev. (1)

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy and V. Rohde, "First experiences with a 2.0-?m near infrared laser system for neuroendoscopy," Neurosurg. Rev. 30, 195-201 (2007).
[CrossRef] [PubMed]

Opt. Commun. (2)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard and R. Moncorgé, "Tm3+:CaF2 for 1.9 ?m laser operation," Opt. Commun. 236, 395-402 (2004).
[CrossRef]

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 ?m Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-574 (2003).
[CrossRef] [PubMed]

J. S. Wang, E. M. Vogel and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Phys. Rev. B (2)

D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. B 136, 954-957 (1964).
[CrossRef]

A. Jha, S. Shen and M. Naftaly, "Structural origin of spectral broadening of 1.5-?m emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
[CrossRef]

Spectrochim. Acta, Part A (1)

G. Özen, B. Demirata, M. L. Öveço?lu and A. Genç, "Thermal and optical properties of Tm3+ doped tellurite glasses," Spectrochim. Acta, Part A 57, 273-280 (2001).
[CrossRef]

World J. Urol. (1)

A. J. Marks and J. M. H. Teichman, "Lasers in clinical urology: state of the art and new horizons," World J. Urol. 25, 227-233 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The calculated emission cross-sections of the Tm3+:TZN and the Tm3+:TZNG from 1300 nm to 2200 nm and the measured luminescence spectra scaled to the calculated values. The peaks are highlighted with the respective transitions.

Fig. 2.
Fig. 2.

The Tm3+:TZNG laser: output power vs. the absorbed pump power.

Fig. 3.
Fig. 3.

The inverse of the output to absorbed slope efficiencies η plotted against the inverse of the transmission of the output couplers for the two samples.

Fig. 4.
Fig. 4.

The Tm3+:TZN and the Tm3+:TZNG glass tunability measured for a 0.8% output coupler and with a fused silica prism as a tuning element. The inset provides the tunability values (FWHM) for the two media.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ E ( λ ) = σ A ( λ ) · Z L Z U · exp [ h c k B T ( 1 λ Z L 1 λ ) ]
1 η = η S η 0 + δ η S η 0 ( 1 T )

Metrics