Abstract

We report spectroscopic and bulk laser performance characteristics for Tm3+-doped tellurite glasses when used as gain media operating around 1.9 µm. Two glass hosts studied are TZN and TZNG and their performances have been compared. In each case, well-characterized cw laser performance was obtained and this has been related to detailed spectroscopic measurements of the important lasing parameters of the laser transitions around 1900 nm when pumped at 793 nm. The maximum output power achieved was 124 mW from the TZNG sample with an associated slope efficiency of 28 % with a tuning range of 135 nm. Efficiency and loss analyses yielded a calculated maximum attainable efficiency of 48 % in Tm3+:TZN compared to 28 % for the TZNG host.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
    [CrossRef] [PubMed]
  2. A. J. Marks and J. M. H. Teichman, “Lasers in clinical urology: state of the art and new horizons,” World J. Urol. 25, 227–233 (2007).
    [CrossRef] [PubMed]
  3. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
    [CrossRef] [PubMed]
  4. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
    [CrossRef]
  5. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 µm,” Opt. Lett. 32, 2040–2042 (2007).
    [CrossRef] [PubMed]
  6. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
    [CrossRef]
  7. A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
    [CrossRef]
  8. G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
    [CrossRef]
  9. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
    [CrossRef]
  10. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. B 136, 954–957 (1964).
    [CrossRef]
  11. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  12. R. Balda, J. Fernández, S. García-Revilla, and J. M. Fernández-Navarro, “Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass,” Opt. Express 15, 6750–6761 (2007).
    [CrossRef] [PubMed]
  13. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
    [CrossRef]
  14. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [CrossRef]
  15. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230, 197–203 (2004).
    [CrossRef]
  16. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
    [CrossRef]

2007 (5)

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

A. J. Marks and J. M. H. Teichman, “Lasers in clinical urology: state of the art and new horizons,” World J. Urol. 25, 227–233 (2007).
[CrossRef] [PubMed]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 µm,” Opt. Lett. 32, 2040–2042 (2007).
[CrossRef] [PubMed]

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[CrossRef]

R. Balda, J. Fernández, S. García-Revilla, and J. M. Fernández-Navarro, “Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass,” Opt. Express 15, 6750–6761 (2007).
[CrossRef] [PubMed]

2004 (3)

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230, 197–203 (2004).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

2003 (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
[CrossRef]

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

1987 (1)

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. B 136, 954–957 (1964).
[CrossRef]

Adair, R.

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

Balda, R.

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Camy, P.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Demirata, B.

G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
[CrossRef]

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

Fernández, J.

Fernández-Navarro, J. M.

Galzerano, G.

García-Revilla, S.

Genç, A.

G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
[CrossRef]

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

Godard, A.

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[CrossRef]

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230, 197–203 (2004).
[CrossRef]

Jha, A.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Knobloch, T.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Kruschat, T.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Laporta, P.

Ludwig, H. C.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Marks, A. J.

A. J. Marks and J. M. H. Teichman, “Lasers in clinical urology: state of the art and new horizons,” World J. Urol. 25, 227–233 (2007).
[CrossRef] [PubMed]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. B 136, 954–957 (1964).
[CrossRef]

Ménard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Moncorgé, R.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Öveçoglu, M. L.

G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
[CrossRef]

Özen, G.

G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
[CrossRef]

Parisi, D.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Rohde, V.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Rostasy, K.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[CrossRef]

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Teichman, J. M. H.

A. J. Marks and J. M. H. Teichman, “Lasers in clinical urology: state of the art and new horizons,” World J. Urol. 25, 227–233 (2007).
[CrossRef] [PubMed]

Teichmann, H.-O.

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Tonelli, M.

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[CrossRef]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Neurosurg. Rev. (1)

H. C. Ludwig, T. Kruschat, T. Knobloch, H.-O. Teichmann, K. Rostasy, and V. Rohde, “First experiences with a 2.0-µm near infrared laser system for neuroendoscopy,” Neurosurg. Rev. 30, 195–201 (2007).
[CrossRef] [PubMed]

Opt. Commun. (2)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230, 197–203 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef] [PubMed]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[CrossRef]

Phys. Rev. B (2)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. B 136, 954–957 (1964).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Spectrochim. Acta, Part A (1)

G. Özen, B. Demirata, M. L. Öveçoğlu, and A. Genç, “Thermal and optical properties of Tm3+ doped tellurite glasses,” Spectrochim. Acta, Part A 57, 273–280 (2001).
[CrossRef]

World J. Urol. (1)

A. J. Marks and J. M. H. Teichman, “Lasers in clinical urology: state of the art and new horizons,” World J. Urol. 25, 227–233 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The calculated emission cross-sections of the Tm3+:TZN and the Tm3+:TZNG from 1300 nm to 2200 nm and the measured luminescence spectra scaled to the calculated values. The peaks are highlighted with the respective transitions.

Fig. 2.
Fig. 2.

The Tm3+:TZNG laser: output power vs. the absorbed pump power.

Fig. 3.
Fig. 3.

The inverse of the output to absorbed slope efficiencies η plotted against the inverse of the transmission of the output couplers for the two samples.

Fig. 4.
Fig. 4.

The Tm3+:TZN and the Tm3+:TZNG glass tunability measured for a 0.8% output coupler and with a fused silica prism as a tuning element. The inset provides the tunability values (FWHM) for the two media.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ E ( λ ) = σ A ( λ ) · Z L Z U · exp [ h c k B T ( 1 λ Z L 1 λ ) ]
1 η = η S η 0 + δ η S η 0 ( 1 T )

Metrics