Abstract

We study the light localization on commensurate arrangements of deep metallic sub-wavelength grooves. We theoretically show that as the degree of commensuration tends to an irrational number new light localization states are produced. These have properties close to that reported for hot spots on disordered surfaces and are not permitted for simple period gratings. Existence of these new resonances is experimentally provided in the infra-red region by reflectivity measurements performed on two commensurate samples with respectively two and three slits per period. Manipulations of these hot spots which can be controlled from far-field could be used for high sensitivity spectroscopy applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
    [Crossref]
  2. A. Hessel and A. A. Oliner, “Wood’s anomaly effects on gratings of large amplitude,” Opt. Commun. 59, 327 (1986).
    [Crossref]
  3. A. Wirgin, T. López-Ríos, T. Lopez-Rios, and A. WirginOpt. Commun.49, 455 (1984).(errata)
    [Crossref]
  4. A. Wirgin and A.A. Maradudin, “Resonant response of a bare metallic grating to s-polarized light,” Prog. Surf. Sci. 22, 1 (1986).
    [Crossref]
  5. G. Tayeb and R. Petit, “On the numerical study of deep conducting lamellar diffraction gratings,” Opt. Acta 31(12,)1361 (1984).
    [Crossref]
  6. M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
    [Crossref]
  7. T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
    [Crossref]
  8. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365 (2005).
    [Crossref]
  9. C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
    [Crossref]
  10. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
    [Crossref] [PubMed]
  11. S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
    [Crossref]
  12. S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
    [Crossref]
  13. C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chimi. Mater. (Paris) 18, 485 (1993).
  14. E. Belin and D. Mayou, “Electronic properties of quasicrystals,” Phys. Scr. T49, 356 (1993).
    [Crossref]
  15. G. Trambly de Lassardiére, D. Nguyen-Manh, and D. Mayou, “Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides,” Prog. Mater. Sci. 50, 679 (2005).
    [Crossref]
  16. S. Aubry and P. Quémerais in Low-dimensional electronic properties of Molybdenum bronzes and oxides, p.293 (C. Schlenker, Kluwer Academic publishers1989).
  17. D. Skigin and R. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. lett. 95, 217402 (2005) and references therein.
    [Crossref] [PubMed]
  18. T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
    [Crossref] [PubMed]
  19. A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
    [Crossref] [PubMed]
  20. H. A. Rowland, Phys. papers, Johns Hopkins Univ. Press, Baltimore (1902).
  21. F. Ducastelle and P. Quémerais, “Chemical Self-Organization During Crystal Growth,” Phys. Rev. Lett. 78, 102 (1997).
    [Crossref]
  22. F. Ducastelle “Order and phase stability in alloys,” Cohesion and Structure vol. 3 (F.R. De Boer and D. G. Pettifor, North-Holland1991).
  23. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press.
  24. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
    [Crossref] [PubMed]
  25. P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
    [Crossref]
  26. H. P. Lu, “Site-specific Raman spectroscopy and chemical dynamics of nanscale intersticial systems,” J. Phys: Condens. Matter. 17, R333 (2005).
    [Crossref]
  27. A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
    [Crossref]
  28. A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
    [Crossref]
  29. A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
    [Crossref]
  30. S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
    [Crossref]
  31. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J-L Pelouard, “Angle-resolved transmission measurements through anisotropic 2D plasmonic crystals,” Opt. Lett. 33, 165 (2008).
    [Crossref] [PubMed]

2008 (2)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J-L Pelouard, “Angle-resolved transmission measurements through anisotropic 2D plasmonic crystals,” Opt. Lett. 33, 165 (2008).
[Crossref] [PubMed]

2007 (1)

T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
[Crossref] [PubMed]

2006 (2)

A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
[Crossref] [PubMed]

2005 (5)

G. Trambly de Lassardiére, D. Nguyen-Manh, and D. Mayou, “Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides,” Prog. Mater. Sci. 50, 679 (2005).
[Crossref]

D. Skigin and R. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. lett. 95, 217402 (2005) and references therein.
[Crossref] [PubMed]

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365 (2005).
[Crossref]

H. P. Lu, “Site-specific Raman spectroscopy and chemical dynamics of nanscale intersticial systems,” J. Phys: Condens. Matter. 17, R333 (2005).
[Crossref]

A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
[Crossref]

2004 (1)

S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
[Crossref]

2003 (1)

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

2002 (1)

A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
[Crossref]

2001 (1)

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

1999 (1)

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

1998 (3)

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
[Crossref]

1997 (1)

F. Ducastelle and P. Quémerais, “Chemical Self-Organization During Crystal Growth,” Phys. Rev. Lett. 78, 102 (1997).
[Crossref]

1995 (1)

C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
[Crossref]

1993 (2)

C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chimi. Mater. (Paris) 18, 485 (1993).

E. Belin and D. Mayou, “Electronic properties of quasicrystals,” Phys. Scr. T49, 356 (1993).
[Crossref]

1986 (2)

A. Hessel and A. A. Oliner, “Wood’s anomaly effects on gratings of large amplitude,” Opt. Commun. 59, 327 (1986).
[Crossref]

A. Wirgin and A.A. Maradudin, “Resonant response of a bare metallic grating to s-polarized light,” Prog. Surf. Sci. 22, 1 (1986).
[Crossref]

1984 (1)

G. Tayeb and R. Petit, “On the numerical study of deep conducting lamellar diffraction gratings,” Opt. Acta 31(12,)1361 (1984).
[Crossref]

1983 (1)

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
[Crossref] [PubMed]

Aigouy, L.

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Albano, E.

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

Aubry, S.

S. Aubry and P. Quémerais in Low-dimensional electronic properties of Molybdenum bronzes and oxides, p.293 (C. Schlenker, Kluwer Academic publishers1989).

Banerjee, K.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
[Crossref] [PubMed]

A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
[Crossref]

Bardou, N.

Belin, E.

C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chimi. Mater. (Paris) 18, 485 (1993).

E. Belin and D. Mayou, “Electronic properties of quasicrystals,” Phys. Scr. T49, 356 (1993).
[Crossref]

Berger, C.

C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chimi. Mater. (Paris) 18, 485 (1993).

Berini, B.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Billaudeau, C.

Boccara, A.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Bragg, W.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Buil, S.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Bustarret, E.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
[Crossref]

Collin, S.

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J-L Pelouard, “Angle-resolved transmission measurements through anisotropic 2D plasmonic crystals,” Opt. Lett. 33, 165 (2008).
[Crossref] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
[Crossref]

Crouse, D.

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365 (2005).
[Crossref]

Daiser, S.

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

Depine, R.

D. Skigin and R. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. lett. 95, 217402 (2005) and references therein.
[Crossref] [PubMed]

Desmarest, C.

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Douketis, C.

P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
[Crossref]

C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
[Crossref]

Drachev, V.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Ducastelle, F.

F. Ducastelle and P. Quémerais, “Chemical Self-Organization During Crystal Growth,” Phys. Rev. Lett. 78, 102 (1997).
[Crossref]

F. Ducastelle “Order and phase stability in alloys,” Cohesion and Structure vol. 3 (F.R. De Boer and D. G. Pettifor, North-Holland1991).

Ducourtieux, S.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Ertl, G.

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

Fournier, T.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

Gadenne, P.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Garcia, N.

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

García-Vidal, FJ.

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

Grésillon, S.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Haslett, T.L.

P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
[Crossref]

C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
[Crossref]

Hessel, A.

A. Hessel and A. A. Oliner, “Wood’s anomaly effects on gratings of large amplitude,” Opt. Commun. 59, 327 (1986).
[Crossref]

Hibbins, A.

A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[Crossref] [PubMed]

Hooper, I.

A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[Crossref] [PubMed]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
[Crossref] [PubMed]

A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
[Crossref]

Lockyear, M.

A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[Crossref] [PubMed]

Lopez-Rios, T.

A. Wirgin, T. López-Ríos, T. Lopez-Rios, and A. WirginOpt. Commun.49, 455 (1984).(errata)
[Crossref]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
[Crossref] [PubMed]

A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
[Crossref]

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

A. Wirgin, T. López-Ríos, T. Lopez-Rios, and A. WirginOpt. Commun.49, 455 (1984).(errata)
[Crossref]

Lu, H. P.

H. P. Lu, “Site-specific Raman spectroscopy and chemical dynamics of nanscale intersticial systems,” J. Phys: Condens. Matter. 17, R333 (2005).
[Crossref]

Maradudin, A.A.

A. Wirgin and A.A. Maradudin, “Resonant response of a bare metallic grating to s-polarized light,” Prog. Surf. Sci. 22, 1 (1986).
[Crossref]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
[Crossref] [PubMed]

Mayou, D.

G. Trambly de Lassardiére, D. Nguyen-Manh, and D. Mayou, “Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides,” Prog. Mater. Sci. 50, 679 (2005).
[Crossref]

E. Belin and D. Mayou, “Electronic properties of quasicrystals,” Phys. Scr. T49, 356 (1993).
[Crossref]

C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chimi. Mater. (Paris) 18, 485 (1993).

Mendoza, D.

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

Miranda, R.

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

Moskovits, M.

P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
[Crossref]

C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
[Crossref]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
[Crossref] [PubMed]

Nguyen-Manh, D.

G. Trambly de Lassardiére, D. Nguyen-Manh, and D. Mayou, “Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides,” Prog. Mater. Sci. 50, 679 (2005).
[Crossref]

Oliner, A. A.

A. Hessel and A. A. Oliner, “Wood’s anomaly effects on gratings of large amplitude,” Opt. Commun. 59, 327 (1986).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Academic Press.

Pannetier, B.

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

Pardo, F.

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J-L Pelouard, “Angle-resolved transmission measurements through anisotropic 2D plasmonic crystals,” Opt. Lett. 33, 165 (2008).
[Crossref] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
[Crossref]

Pelouard, J-L

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J-L Pelouard, “Angle-resolved transmission measurements through anisotropic 2D plasmonic crystals,” Opt. Lett. 33, 165 (2008).
[Crossref] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
[Crossref]

Petit, R.

G. Tayeb and R. Petit, “On the numerical study of deep conducting lamellar diffraction gratings,” Opt. Acta 31(12,)1361 (1984).
[Crossref]

Podolskiy, V.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Preist, T.

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

Quelin, X.

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
[Crossref] [PubMed]

A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
[Crossref]

F. Ducastelle and P. Quémerais, “Chemical Self-Organization During Crystal Growth,” Phys. Rev. Lett. 78, 102 (1997).
[Crossref]

S. Aubry and P. Quémerais in Low-dimensional electronic properties of Molybdenum bronzes and oxides, p.293 (C. Schlenker, Kluwer Academic publishers1989).

Rivoal, J. C.

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Rivoal, JC

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Rowland, H. A.

H. A. Rowland, Phys. papers, Johns Hopkins Univ. Press, Baltimore (1902).

Safonov, V.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Sambles, R.

A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[Crossref] [PubMed]

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

Sánchez-Dehesa, J.

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

Sarychev, A.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Sauvan, C.

Shalaev, V.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Skigin, D.

D. Skigin and R. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. lett. 95, 217402 (2005) and references therein.
[Crossref] [PubMed]

Sobnack, M.

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

Tan, W.

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

Tayeb, G.

G. Tayeb and R. Petit, “On the numerical study of deep conducting lamellar diffraction gratings,” Opt. Acta 31(12,)1361 (1984).
[Crossref]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
[Crossref]

Trambly de Lassardiére, G.

G. Trambly de Lassardiére, D. Nguyen-Manh, and D. Mayou, “Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides,” Prog. Mater. Sci. 50, 679 (2005).
[Crossref]

Vardeny, Z.V.

T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
[Crossref] [PubMed]

Wandelt, K.

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

Wang, Z.

C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
[Crossref]

Wanstall, N.

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

Wirgin, A.

A. Wirgin and A.A. Maradudin, “Resonant response of a bare metallic grating to s-polarized light,” Prog. Surf. Sci. 22, 1 (1986).
[Crossref]

A. Wirgin, T. López-Ríos, T. Lopez-Rios, and A. WirginOpt. Commun.49, 455 (1984).(errata)
[Crossref]

A. Wirgin, T. López-Ríos, T. Lopez-Rios, and A. WirginOpt. Commun.49, 455 (1984).(errata)
[Crossref]

Ying, Z.

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Zhang, P.

P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
[Crossref]

Ann. Chimi. Mater. (Paris) (1)

C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chimi. Mater. (Paris) 18, 485 (1993).

Appl. Phys. Lett (1)

S. Collin, F. Pardo, R. Teissier, and J-L Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett 85, 194 (2004).
[Crossref]

Eur. Phys. J. D. (1)

A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143–154 (2003).
[Crossref]

IEEE Trans. Electron. Dev. (1)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365 (2005).
[Crossref]

J. Appl. Phys. (1)

A. Barbara, J. Le Perchec, P. Quémerais, and T. López-Ríos, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005).
[Crossref]

J. Phys: Condens. Matter. (1)

H. P. Lu, “Site-specific Raman spectroscopy and chemical dynamics of nanscale intersticial systems,” J. Phys: Condens. Matter. 17, R333 (2005).
[Crossref]

Nature (1)

T. Matsui, A. Agrawal, A. Nahata, and Z.V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007).
[Crossref] [PubMed]

Opt. Acta (1)

G. Tayeb and R. Petit, “On the numerical study of deep conducting lamellar diffraction gratings,” Opt. Acta 31(12,)1361 (1984).
[Crossref]

Opt. Commun. (1)

A. Hessel and A. A. Oliner, “Wood’s anomaly effects on gratings of large amplitude,” Opt. Commun. 59, 327 (1986).
[Crossref]

Opt. Lett. (1)

Phys. Rev B. (1)

A. Barbara, P. Quémerais, E. Bustarret, and T. López-Ríos, “Optical transmission through subwavelength metallic gratings,” Phys. Rev B. 66, 161403(R) (2002).
[Crossref]

Phys. Rev. B (3)

P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).
[Crossref]

C. Douketis, Z. Wang, T.L. Haslett, and M. Moskovits, “Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy,” Phys. Rev. B 51, 11022–11031 (1995).
[Crossref]

S. Ducourtieux, V. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. Boccara, JC Rivoal, W. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinous metal films,” Phys. Rev. B 64, 165403 (2001).
[Crossref]

Phys. Rev. Lett (1)

S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental Observation of Localized Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett 82, 4520 (1999).
[Crossref]

Phys. Rev. Lett. (7)

A. Hibbins, I. Hooper, M. Lockyear, and R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

M. Sobnack, W. Tan, N. Wanstall, T. Preist, and R. Sambles, “Stationary surface plasmons on zero-order metal grating,” Phys. Rev. Lett. 80, 5667 (1998).
[Crossref]

T. López-Ríos, D. Mendoza, FJ. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[Crossref]

E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Raman-scattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314–2317 (1983).
[Crossref]

F. Ducastelle and P. Quémerais, “Chemical Self-Organization During Crystal Growth,” Phys. Rev. Lett. 78, 102 (1997).
[Crossref]

D. Skigin and R. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. lett. 95, 217402 (2005) and references therein.
[Crossref] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling Strong Electromagnetic Fields at Subwavelength Scales,” Phys. Rev. Lett. 97, 036405 (2006).
[Crossref] [PubMed]

Phys. Scr. (1)

E. Belin and D. Mayou, “Electronic properties of quasicrystals,” Phys. Scr. T49, 356 (1993).
[Crossref]

Prog. Mater. Sci. (1)

G. Trambly de Lassardiére, D. Nguyen-Manh, and D. Mayou, “Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides,” Prog. Mater. Sci. 50, 679 (2005).
[Crossref]

Prog. Surf. Sci. (1)

A. Wirgin and A.A. Maradudin, “Resonant response of a bare metallic grating to s-polarized light,” Prog. Surf. Sci. 22, 1 (1986).
[Crossref]

Other (5)

A. Wirgin, T. López-Ríos, T. Lopez-Rios, and A. WirginOpt. Commun.49, 455 (1984).(errata)
[Crossref]

S. Aubry and P. Quémerais in Low-dimensional electronic properties of Molybdenum bronzes and oxides, p.293 (C. Schlenker, Kluwer Academic publishers1989).

H. A. Rowland, Phys. papers, Johns Hopkins Univ. Press, Baltimore (1902).

F. Ducastelle “Order and phase stability in alloys,” Cohesion and Structure vol. 3 (F.R. De Boer and D. G. Pettifor, North-Holland1991).

E. D. Palik, Handbook of Optical Constants of Solids, Academic Press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Example of a uniformly ordered commensurate structure <3/5> of period D=3S+2L where L and S respectively stand for the long and short distances separating two cavities. The grooves are identical with an aperture w and a height h. Inset represents a SEM image of the <2/3> gold sample.

Fig. 2.
Fig. 2.

(Color Online)(a) Calculated specular reflectivity as R/Q tends to the inverse of the mean golden number and (b) magnetic near-field intensity at the interface y=0 at the frequency resonance located around 2000 cm -1 where the reflectivity is minimal. Y-scale goes from R min to 1 in (a) and from 0 to I Max in (b). Simulations were made considering w=0.3µm, S=0.7µm, L=1.2µm, h=1µm, and an incidence angle θ=15°. Vertical black lines in (b) indicate the position of the cavities within one period. For shallow grooves (h=0.2µm) the strong resonances disappear. Only weak resonances due to the horizontal surface plasmon subsist and the near-field exhibits no hot spots.

Fig. 3.
Fig. 3.

(Color Online) Intensity maps of the electric field along the x-axis above one period of the <8/13> grating considered on Fig.2. Calculations were made at the frequencies indicated by green dots on Fig.2(a): (a) 1985 cm -1, (b) 2015 cm -1,(c) 2035 cm -1 and (d) 2040 cm -1. The fluctuation of the photons localization is clearly illustrated, while the incident wave number varies by only a few percent.

Fig. 4.
Fig. 4.

(Color Online) Measured (black) and calculated (gray) specular reflectivity at θ=10° of the gratings <1/1> (a), <1/2> (b) and <2/3> (c). Cavity resonances are noted CM and surface plasmon SP. The arrows indicate the direction of the equivalent dipole momentum at the mouth of each cavity.

Fig. 5.
Fig. 5.

(Color Online) Experimental (black) and calculated (gray) turnover of the relative reflectivity minima of the two sharp resonances for the <2/3> grating when varying the incidence angle θ=5° (a), θ=12.5° (b), θ=24° (c). (d) displays maps of the near-electric field intensity along the x-axis and above the cavities for to the antisymmetric (left) and symmetric (right) resonances measured at θ=5°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H z ( II ) ( x , y ) = p = 1 Q n = 0 + A p n cos [ w ( x x p + w 2 ) ]
× ( e i μ n ( y + 2 h ) + r n e i μ n y ) ( x x p )

Metrics