Abstract

We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-µm telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  2. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
    [CrossRef]
  3. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett. 68, 557-559 (1992).
    [CrossRef] [PubMed]
  5. T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
    [CrossRef] [PubMed]
  6. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
    [CrossRef] [PubMed]
  7. W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  8. S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, "Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods," Eur. Phys. J. D 30, 2013148 (2004).
    [CrossRef]
  9. A. Poppe A. Fedrizzi, R. Ursin, H. Bohm, T. Lorunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, "Practical quantum key distribution with polarization entangled photons," Opt. Express  12, 3865-3871 (2004).
    [CrossRef] [PubMed]
  10. T. Honjo, H. Takesue and K. Inoue, "Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs," Opt. Lett. 32, 1165 (2007).
    [CrossRef] [PubMed]
  11. A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606 (2004).
    [CrossRef]
  12. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 ?m by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
    [CrossRef] [PubMed]
  13. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
    [CrossRef] [PubMed]
  14. N. Namekata, S. Sasamori, and S. Inoue, "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Express 14, 10043-10049 (2006).
    [CrossRef] [PubMed]
  15. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
    [CrossRef]
  16. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).
  17. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled. photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
    [CrossRef]
  18. X. Li, P. L. Voss, J. E. Sharping and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  19. H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  20. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
    [CrossRef]
  21. T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 23, 2797, (2004).
    [CrossRef]
  22. J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
    [CrossRef]
  23. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
    [CrossRef]
  24. H. Takesue and K. Inoue, "Generation of 1.5-um band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  25. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
    [CrossRef] [PubMed]
  26. M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "Wavelength conversion using quasi-phase matched LiNbO3 waveguides," The Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.
  27. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005).
    [CrossRef] [PubMed]
  28. S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
    [CrossRef]
  29. P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
    [CrossRef]
  30. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453 (2006).
    [CrossRef] [PubMed]
  31. E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
    [CrossRef]

2008 (1)

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

2007 (4)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

T. Honjo, H. Takesue and K. Inoue, "Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs," Opt. Lett. 32, 1165 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (3)

2004 (5)

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled. photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

2002 (4)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

2001 (1)

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

2000 (3)

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

1998 (1)

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

1992 (1)

C. H. Bennett, G. Brassard and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Albota, M. A.

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

Bennett, C. H.

C. H. Bennett, G. Brassard and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Berglund, A. J.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Chulkova, G.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

De Micheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

Diamanti, E.

Dzardanov, A.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Ekert, A. K.

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fasel, S.

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, "Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods," Eur. Phys. J. D 30, 2013148 (2004).
[CrossRef]

Fejer, M. M.

Fujiwara, M.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

Fukuda, H.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Gisin, N.

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, "Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods," Eur. Phys. J. D 30, 2013148 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Gol'tsman, G. N.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Gruber, S. S.

Hadfield, R. H.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005).
[CrossRef] [PubMed]

Honjo, T.

Inoue, K.

Inoue, S.

Itabashi, S.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Jennewein, T.

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Kaji, R.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled. photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Kamada, H.

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Kwiat, P. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Langrock, C.

Li, X.

X. Li, P. L. Voss, J. E. Sharping and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

Mermin, N. D.

C. H. Bennett, G. Brassard and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Miki, S.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

Miller, A. J.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005).
[CrossRef] [PubMed]

Mirin, R. P.

Naik, D. S.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Nam, S. W.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005).
[CrossRef] [PubMed]

Namekata, N.

Nishida, Y.

Okunev, O.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

Peterson, C. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Rarity, J. G.

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

Ribordy, G.

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, "Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods," Eur. Phys. J. D 30, 2013148 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Roussev, R. V.

Sasaki, M.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

Sasamori, S.

Scarani, V.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

Schwall, R. E.

Semenov, A.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Simon, C

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Smirnov, K.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Stevens, M. J.

Tadanaga, O.

Takahashi, H.

Takesue, H.

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

Tanzilli, S.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

Tapster, P. R.

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Tokura, Y.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Tsuchida, H.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled. photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Tsuchizawa, T.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Voronov, B.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Waks, E.

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Wang, Z.

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

Watanabe, T.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Weihs, G.

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

White, A. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Williams, C.

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Wong, F. N. C.

Yamada, K.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
[CrossRef] [PubMed]

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Yoshizawa, A.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled. photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Zbinden, H.

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, "Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods," Eur. Phys. J. D 30, 2013148 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Zeevi, A.

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Zeilinger, A.

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606 (2004).
[CrossRef]

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, A. J. Miller, R. H. Hadfield, S. W. Nam and Z. Wang, "Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates," Appl. Phys. Lett. 92, 061116 (2008).
[CrossRef]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled. photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Eur. Phys. J. D (1)

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, "Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods," Eur. Phys. J. D 30, 2013148 (2004).
[CrossRef]

Euro Phys. J. (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Euro Phys. J. 18, 155-160 (2002).

J. Mod. Optics (1)

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

Nat. Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (2)

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002).
[CrossRef]

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Phys. Rev. Lett. (7)

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

T. Jennewein, C Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum Cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum Communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Other (3)

H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

H. Takesue and K. Inoue, "Generation of 1.5-um band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "Wavelength conversion using quasi-phase matched LiNbO3 waveguides," The Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of BBM92QKD with time-bin entangled photon pairs.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Two-photon interference fringe with no transmission fiber.

Fig. 4.
Fig. 4.

Two-photon interference fringe after transmission over 100-km dispersion shifted fiber.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ψ = 1 2 ( 1 s 1 i + 2 s 2 i ) ,
ψ f = 1 4 [ 2 i t 1 a t 1 b + ( e i ( θ a + θ b ) + 1 ) ( D 1 , t 2 a D 1 , t 2 b D 2 , t 2 a D 2 , t 2 b )
i ( e i ( θ a + θ b ) 1 ) ( D 2 , t 2 a D 1 , t 2 b + D 2 , t 2 a D 1 , t 2 b ) 2 e i ( θ a + θ b ) t 3 a t 3 b ] ,
ψ f energy- base = 1 2 ( D 1 a D 1 b D 2 a D 2 b )
ψ f time- base = 1 2 ( i t 1 a t 1 b t 3 a t 3 b )
c s = μ c 2 α s + d s ,
c i = μ c 2 α i + d i ,
R c c = 1 4 μ c α s α i ,
R a c c = ( μ c 2 α s + d s ) ( μ c 2 α i + d i )
V = ( R c c + R a c c ) R a c c ( R c c + R a c c ) + R a c c = R c c R c c + 2 R a c c .
R sift = f ( R c c + R a c c ) f 2 μ t α s α i
QBER = 2 R a c c R c c + 4 R a c c μ t 2 ( 1 + μ t )
R sec ure = R sift [ log 2 ( 1 2 + 2 e 2 e 2 ) + f ( e ) ( e log 2 e + ( 1 e ) log 2 ( 1 e ) ) ]

Metrics