Abstract

We investigated the splitting of surface electromagnetic waves trapped at the output surface of a one-dimensional metallic grating structure. The output gratings of the structure asymmetrically such that the output surfaces at the different sides of the subwavelength aperture can support surface waves at different frequencies. The transmission amplitude as measured at the left side is 1,000 times of that at the right side at 16 GHz. At 24 GHz, the transmission measured at the right side is 20 times that of the left side of the structure. Therefore, surface waves are guided into the different sides of the aperture at different frequencies via metallic gratings. The experimental results are in agreement with the theoretical results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
    [CrossRef] [PubMed]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
    [CrossRef] [PubMed]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. B 23, 419 (2006).
    [CrossRef]
  5. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
    [CrossRef]
  6. Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
    [CrossRef]
  7. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  8. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A: Pure Appl. Opt. 7, 159 (2005).
    [CrossRef]
  9. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
    [CrossRef]
  10. H. Caglayan, I. Bulu, and E. Ozbay "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
    [CrossRef]
  11. J. Bravo-Abada, F. J. Garcia-Vidal, and L. Martin-Moreno, "Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations," Photon. Nanostruct. 1, 55 (2003).
    [CrossRef]
  12. Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
    [CrossRef]
  13. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
    [CrossRef]
  14. F. J. Garcia-Vidal, L. Martin-Moreno and J. B. Pendry, "Surface with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005).
    [CrossRef]

2008 (1)

H. Caglayan, I. Bulu, and E. Ozbay "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

2007 (1)

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

2006 (3)

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. B 23, 419 (2006).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

2005 (3)

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A: Pure Appl. Opt. 7, 159 (2005).
[CrossRef]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno and J. B. Pendry, "Surface with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005).
[CrossRef]

2004 (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

2003 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

J. Bravo-Abada, F. J. Garcia-Vidal, and L. Martin-Moreno, "Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations," Photon. Nanostruct. 1, 55 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A: Pure Appl. Opt. 7, 159 (2005).
[CrossRef]

Baida, F.I.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Bartoli, F. J.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abada, F. J. Garcia-Vidal, and L. Martin-Moreno, "Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations," Photon. Nanostruct. 1, 55 (2003).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. B 23, 419 (2006).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A: Pure Appl. Opt. 7, 159 (2005).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. B 23, 419 (2006).
[CrossRef]

Chang, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Chen, L.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Chen, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Fu, Z.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Gana, Q.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno and J. B. Pendry, "Surface with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Guo, B.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

Hoffmann, P.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Huang, K. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

Lee, C. K.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Lezec, H. J.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Liaw, J. W.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Lin, D. Z.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Liu, J. M.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno and J. B. Pendry, "Surface with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. B 23, 419 (2006).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A: Pure Appl. Opt. 7, 159 (2005).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno and J. B. Pendry, "Surface with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005).
[CrossRef]

Perentes, A.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Poujet, Y.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Roussey, M.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Salvi, J.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

Santschi, C.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Song, G.

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Van Labeke, D.

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Yeh, C. S.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Yeh, J. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Yu, L. B.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

Q. Gana, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

F. J. Garcia-Vidal, L. Martin-Moreno and J. B. Pendry, "Surface with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A: Pure Appl. Opt. 7, 159 (2005).
[CrossRef]

J. Opt. Soc. B (1)

H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. B 23, 419 (2006).
[CrossRef]

Photon. Nanostruct. (2)

J. Bravo-Abada, F. J. Garcia-Vidal, and L. Martin-Moreno, "Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations," Photon. Nanostruct. 1, 55 (2003).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. 4, 47 (2006).
[CrossRef]

Phys. Rev. B (1)

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Science (2)

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Supplementary Material (2)

» Media 1: AVI (3094 KB)     
» Media 2: AVI (3224 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). The metallic (Al) grating structure has a subwavelength (2 mm) aperture at the center, in which the grating heights are 4 mm. The thickness of the structure t=16 mm. The period of the input grooves is 16 mm (b=8 mm) and the grating period of the output surface on one side of the aperture is 22 mm (a=11 mm), while the grating period on the other side is 14 mm (c=7 mm). (b) Experimental set-up for transmission measurements.

Fig. 2.
Fig. 2.

The surface-waves guided through the left side (side with an output grating period of 22 mm) were at 16 GHz, while the EM waves guided through the right side of the aperture were at 24 GHz. These results are in good agreement with the FDTD calculations. The transmission amplitude measured at the left side is 1,000 times that of the right side, which is at 16 GHz. At 24 GHz, the transmission measured at the right side is 20 times that of the left side of the structure.

Fig. 3.
Fig. 3.

The calculated E-field amplitude distributions were at (a) 16 GHz and (b) 24 GHz. The surface splitting phenomena occurs because the wave vector of the SP mode match that of the EM waves at 16 GHz for the left side of the aperture, while at 24 GHz for the right side. Red indicates the maximum and blue indicates the minimum.

Fig. 4.
Fig. 4.

The calculated (a) z and (b) x dependence of the E-field distributions were at 16 GHz and (c) z and (d) x dependence of the E-field distributions were at 24 GHz. These modes are bound to the surface and do not mostly leak into free space.

Fig. 5.
Fig. 5.

The calculated surface currents were at (a). 16 GHz (Media 1) and (b). 24 GHz. (Media 2) Red indicates the maximum and blue indicates the minimum. Phase of the currents changes by 10 degrees. (GIF-video file, 616Kb, 458Kb)

Fig. 6.
Fig. 6.

The time-varied power flows at the different sides of the aperture (a) at 16 GHz and (b) 24 GHz. The amplitude of the power flow is quite different for the probes on the right and left sides of the aperture.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x 2 k 0 2 k o 2 = a d tan ( k 0 h )

Metrics