Abstract

This paper presents 1550-nm simulation results on the waveguided silicon-on-insulator four-port optical filtering and switching devices known as “SCISSOR” (an in-line array of microring resonators wherein each ring is coupled to two bus waveguides). We optimized the array number, the ring-bus coupling and the inter-ring spacing in order to obtain “rectangular” filter-passband shapes that have not heretofore been reported in the resonant-optics literature. We were able to engineer a box-like bandpass whose wavelength width could be anywhere from 5 to 50 % of the free spectral range (FSR). We then performed ring-bus apodization of the array that increased side-lobe suppression on the main filter band and widened the band. By reducing the FSR to 2.51 nm with increased ring diameter, we also showed that complete, high-extinction 2×2 optical switching is attained when the effective index of each ring in the group is changed by 2×10-3, giving 1.02-nm shift of the 0.77-nm passband. Tunable filtering, sensing, reconfigurable add/drop and wavelength-division de-multiplexing is offered in addition to switching.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  2. J. E. Heebner, R. W. Boyd, and Q.-H. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 19, 722-731 (2002).
    [CrossRef]
  3. J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901 (2006).
    [CrossRef] [PubMed]
  4. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Polymer Microring Coupled-Resonator Optical Waveguides," J. Lightwave Technol. 24, 1843-1849 (2006).
    [CrossRef]
  5. F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
    [CrossRef]
  6. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
    [CrossRef]
  7. Y. Landobasa and M. Chin, "Defect modes in micro-ring resonator arrays," Opt. Express 13, 7800-7815 (2005).
    [CrossRef] [PubMed]
  8. V. Van, "Synthesis of elliptic optical filters using mutually coupled microring resonators," J. Lightwave Technol. 25, 584-590 (2007).
    [CrossRef]
  9. A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems," J. Lightwave Technol. 20, 296-303 (2002).
    [CrossRef]
  10. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, "Distributed and localized feedback in microresonator sequences for linear and nonlinear optics," J. Opt. Soc. Am. B 21, 1818-1832 (2004).
    [CrossRef]
  11. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
    [CrossRef] [PubMed]
  12. S. V. Boriskina, "Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides," Opt. Express 15, 17371-17379 (2007).
    [CrossRef] [PubMed]
  13. S. Darmawan, Y. M. Landobasa, and M.-K. Chin, "Pole-zero dynamics of high-order ring resonator filters," J. Lightwave Technol. 25, 1568-1575 (2007).
    [CrossRef]
  14. T. Ito and Y. Kokubun, "Fabrication of a 1 x 2 interleaver by parallel-coupled microring resonators," Electron. Commun. Jpn. 89, 56-64 (2006).
  15. E. W. Weisstein, "Apodization Ffunction," from MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/ApodizationFunction.html.
  16. S. Cho and R. Soref, "Interferometric microring-resonant 2 x 2 optical switches," Opt. Express 16, 13304-13314 (2008).
    [CrossRef] [PubMed]
  17. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators," Opt. Lett. 25, 344-346 (2000).
    [CrossRef]
  18. J. Capmany, P. Muñoz, J. D. Domenech, and M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Express 15, 10196-10206 (2007).
    [CrossRef] [PubMed]
  19. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, "Ultralow-power silicon microdisk modulators and switches," in IEEE-LEOS 5th International Conference on Group IV Photonics (IEEE, 2008), invited paper WA2.
  20. R. Soref, "Toward silicon-based longwave integrated optoelectronics (LIO)," in Proc. SPIE 6898, 689809 (2008).
    [CrossRef]
  21. M. Florjanczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D. Xu, "Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Express 15, 18176-18189 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

2006 (6)

J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Polymer Microring Coupled-Resonator Optical Waveguides," J. Lightwave Technol. 24, 1843-1849 (2006).
[CrossRef]

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

T. Ito and Y. Kokubun, "Fabrication of a 1 x 2 interleaver by parallel-coupled microring resonators," Electron. Commun. Jpn. 89, 56-64 (2006).

J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2002 (2)

2000 (1)

1999 (1)

Absil, P. P.

Boriskina, S. V.

Boyd, R. W.

Capmany, J.

Chak, P.

Cheben, P.

Chin, M.

Chin, M.-K.

Cho, S.

Chu, S. T.

Darmawan, S.

DeRose, G. A.

Domenech, J. D.

Florjanczyk, M.

Heebner, J. E.

Hryniewicz, J. V.

Ito, T.

T. Ito and Y. Kokubun, "Fabrication of a 1 x 2 interleaver by parallel-coupled microring resonators," Electron. Commun. Jpn. 89, 56-64 (2006).

Janz, S.

Kokubun, Y.

T. Ito and Y. Kokubun, "Fabrication of a 1 x 2 interleaver by parallel-coupled microring resonators," Electron. Commun. Jpn. 89, 56-64 (2006).

Landobasa, Y.

Landobasa, Y. M.

Lee, R. K.

Little, B. E.

Martinelli, M.

Melloni, A.

Muñoz, P.

Muriel, M. A.

O’Boyle, M.

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Park, Q.-H.

Pereira, S.

Poon, J. K.

Poon, J. K. S.

Scherer, A.

Scheuer, J.

J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

Scott, A.

Sekaric, L.

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Sipe, J. E.

Solheim, B.

Soref, R.

Van, V.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Xu, D.

Xu, Y.

Yariv, A.

Zhu, L.

Appl. Phys. Lett. (1)

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Electron. Commun. Jpn. (1)

T. Ito and Y. Kokubun, "Fabrication of a 1 x 2 interleaver by parallel-coupled microring resonators," Electron. Commun. Jpn. 89, 56-64 (2006).

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

Other (3)

E. W. Weisstein, "Apodization Ffunction," from MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/ApodizationFunction.html.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, "Ultralow-power silicon microdisk modulators and switches," in IEEE-LEOS 5th International Conference on Group IV Photonics (IEEE, 2008), invited paper WA2.

R. Soref, "Toward silicon-based longwave integrated optoelectronics (LIO)," in Proc. SPIE 6898, 689809 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Internal and external field configurations in a DC-SCISSOR.

Fig. 2.
Fig. 2.

Calculated spectral responses for different arm lengths (a: L s =0.5πR, b: L s =πR, c: L s =1.5πR, and d: L s =2πR).

Fig. 3.
Fig. 3.

Calculated Spectral Responses at the drop port of the DC-SCISSORs with different cross-coupling efficiencies (a: c=0.60, b: c=0.53, c: c=0.31, d: c=0.14).

Fig. 4.
Fig. 4.

Apodized DC-SCISSOR with 11 microring resonators.

Fig. 5.
Fig. 5.

Calculated spectral responses at the drop port of unapodized (solid) and apodized (dashed) DC-SCISSORs with different initial transmission coefficients (a: t 1 =0.8, b: t 1 =0.85, c: t 1 =0.95, d: t 1 =0.99).

Fig. 6.
Fig. 6.

Spectral responses of two apodized 11-resonator DC-SCISSOR switches for different index perturbations (a,c: linear scale; b,d: semi-log scale).

Fig. 7.
Fig. 7.

(a) Three apodization profiles applied to the transmission coefficient, (b) Spectral responses of the 11-resonator DC-SCISSOR for different apodization functions.

Fig. 8.
Fig. 8.

Spectral responses of two apodized 5-resonator DC-SCISSOR switches for different index perturbations. (a,c: linear scale; b,d: semi-log scale).

Fig. 9.
Fig. 9.

A 4×4 DC-SCISSOR matrix switch.

Fig. 10.
Fig. 10.

A 1×4 DC-SCISSOR matrix switch.

Fig. 11.
Fig. 11.

A 2×2 optical switch.

Fig. 12.
Fig. 12.

A 1×8 wavelength-division demultiplexer.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ e 1 , N e 2 , N ] = j c N [ t N 1 1 t N ] [ E 1 , N E 2 , N ] K N [ E 1 , N E 2 , N ] ,
[ E 3 , N E 4 , N ] = K N [ e 3 , N e 4 , N ] ,
t i 2 + c i 2 = 1 , i = 1 , , N ,
[ e 3 , N e 4 , N ] = [ 0 exp ( j β π R ) exp ( j β π R ) 0 ] [ e 1 , N e 2 , N ] P N [ e 1 , N e 2 , N ] ,
[ E 3 , N E 4 , N ] = ( K N P N K N ) [ E 1 , N E 2 , N ] M N [ E 1 , N E 2 , N ] , M N = [ m N 11 m N 12 m N 21 M N 22 ] .
[ E 2 , N E 3 , N ] = 1 m N 22 [ m N 21 1 Det [ M N ] m N 12 ] [ E 1 , N E 4 , N ] .
[ E 1 , N E 4 , N ] = [ exp ( j β L s ) 0 0 exp ( j β L s ) ] [ E 2 , N 1 E 3 , N 1 ] L [ E 2 , N 1 E 3 , N 1 ] ,
[ E 2 , N E 3 , N ] = ( M N L M N 1 L M 1 ) [ E 1 , 1 E 4 , 1 ] S [ E 1 , 1 E 4 , 1 ] , S = [ s 11 s 12 s 21 s 22 ] .
P DC - SCISSOR , drop = - s 21 s 22 2 , P DC - SCISSOR , through = Det [ S ] s 22 2 .
t i = { t i 1 Δ t ( N 2 ) ( 1 < i N + 1 2 ) t i 1 + Δ t ( N 2 ) ( N + 1 2 < i N ) ,
Δ t = ( t 1 t ( N + 1 ) 2 ) ,

Metrics