Abstract

An all-optical signal processing scheme coupling wavelength conversion and NRZ-to-RZ data format conversion with pulsewidth tunability into one by combination of SOA- and fiber-based switches, is experimentally demonstrated, and its transmission performance is investigated. An 1558 nm NRZ data signal is converted to RZ data format at 1546 nm with widely tunable pulsewidth from 20 % to 80 % duty cycle at the bit-rate of 10 Gb/s. The investigation on transmission performance of the converted RZ signals at each different pulsewidth is carried out over various standard single-mode fiber (SSMF) links up to 65 km long without dispersion compensation. The results clarify a significant improvement on transmission performance of converted signal in comparison with the conventional NRZ signal through tunable pulsewidth management and show the existence of an optimal pulsewidth for the RZ data format at each transmission distance with particular cumulative dispersion. The optimal pulsewidths of the converted RZ signal and its corresponding power penalties against the NRZ signal are also investigated in different SSMF links.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
    [CrossRef]
  2. L. Boivin, and G. J. Pendock, "Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle," in Proc. Optical Amplifiers and its Applications (OAA), (1998), pp. 292-295.
  3. M. Matsuura, N. Kishi, and T. Miki, "Performances of a widely pulsewidth-tunable multiwavelength pulse generator by a single SOA-based delayed interferometric switch," Opt. Express 13, 10010-10021 (2005). http://www.opticsexpress.org/abstract.cfm?uri=oe-13-25-10010.
    [CrossRef] [PubMed]
  4. L.-S. Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and AlanE. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005).
    [CrossRef]
  5. A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985 (1998).
    [CrossRef]
  6. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
    [CrossRef]
  7. X. Yang, R. J. Manning, A. K. Mishra, R. P. Webb, A. D. Ellis, and D. Cotter, "Application of semiconductor optical amplifiers in high-speed all-optical NRZ to RZ format conversion," in Proc. International Conference on Transparent Optical Networks (ICTON), (2007), pp. 228-231.
  8. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, "Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror," J. Lightwave Technol. 23, 834-841 (2005).
    [CrossRef]
  9. Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).
  10. S. B. Jun, K. J. Park, H. Kim, H. S. Chung, J. H. Lee, and Y. C. Chung, "Passive optical NRZ-to-RZ converter," in Proc. Optical Fiber Communication Conference (OFC), (2004), ThN1.
  11. G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleaver," in Proc. Optical Fiber Communication Conference (OFC), (2006), JThB32.
  12. H. Nguyen Tan, M. Matsuura, and N. Kishi, "Pulsewidth tunable NRZ-to-RZ data format conversion by combination of SOA- and fiber-based switches," in Proc. OptoElectronics and Communications Conference (OECC/ACOFT), (2008), TuF-5.
  13. M. Matsuura, K. Chida, N. Kishi, and T. Miki, "Pulse-width tunable waveform conversion by combination of fiber- and SOA-based switches," in Proc. Asia-Pacific Conference on Communications (APCC), (2007), FPM 2-1-1.
  14. M. Matsuura, and N. Kishi, "All-optical wavelength and pulsewidth conversions with a Sagnac interferometer semiconductor based switch," Opt. Lett. 28, 132-134 (2003).
    [CrossRef] [PubMed]
  15. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
    [CrossRef]
  16. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
    [CrossRef]
  17. M. Matsuura, N. Kishi, and T. Miki, "Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters," J. Lightwave Technol. 25, 38-45 (2007).
    [CrossRef]
  18. A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
    [CrossRef]
  19. M. Tanaka, and M. Shigematsu, "Chirp compensation using four-wave mixing and its application to 10-Gb/s directly modulated signal transmission over SMF," IEEE Photon. Technol. Lett. 16, 1957-1959 (2004).
    [CrossRef]
  20. K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, "Extinction ratio improvement by pump-modulated fourwave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Opt. Express 13,8900-8905 (2005). http://www.opticsexpress.org/abstract.cfm?uri=OE-13-22-8900.
    [CrossRef] [PubMed]
  21. J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
    [CrossRef]
  22. M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
    [CrossRef]
  23. S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
    [CrossRef]

2007 (1)

2006 (1)

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

2005 (5)

2004 (1)

M. Tanaka, and M. Shigematsu, "Chirp compensation using four-wave mixing and its application to 10-Gb/s directly modulated signal transmission over SMF," IEEE Photon. Technol. Lett. 16, 1957-1959 (2004).
[CrossRef]

2003 (3)

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

M. Matsuura, and N. Kishi, "All-optical wavelength and pulsewidth conversions with a Sagnac interferometer semiconductor based switch," Opt. Lett. 28, 132-134 (2003).
[CrossRef] [PubMed]

2001 (1)

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

2000 (1)

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
[CrossRef]

1999 (1)

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

1998 (1)

1996 (1)

J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
[CrossRef]

1990 (1)

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Alan, Q.

Argyris, A.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Chow, K. K.

Curtis, L.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Eiselt, M.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
[CrossRef]

Ellis, A. D.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Hagimoto, K.

Ikiades, A.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

Kashyap, R.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Kataoka, T.

Kelly, A. E.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Kim, Y. J.

Kishi, N.

Lacey, J. P. R.

J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
[CrossRef]

Laming, R. I.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Lee, C. G.

Lee, H. J.

Lin, J.

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Liu, G.

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Luo, T.

L.-S. Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and AlanE. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005).
[CrossRef]

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

Maeda, M. W.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Manning, R. J.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Matsuura, M.

McGeehan, J. E.

Miki, T.

Miyamoto, Y.

Moodie, D. G.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Motaghian Nezam, S. M. R.

Nakamura, S.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Nesset, D.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Pan, Z.

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

Park, C. S.

Park, C.-S.

Park, S. G.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
[CrossRef]

Pendock, G. J.

J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
[CrossRef]

Phillips, I. D.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Roditi, E.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

Sahin, A. B.

Sano, A.

Sessa, W. B.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Shigematsu, M.

M. Tanaka, and M. Shigematsu, "Chirp compensation using four-wave mixing and its application to 10-Gb/s directly modulated signal transmission over SMF," IEEE Photon. Technol. Lett. 16, 1957-1959 (2004).
[CrossRef]

Shu, C.

Simos, H.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

Spicer, R.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Spiekman, L. H.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
[CrossRef]

Syvridis, D.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

Tajima, K.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Tanaka, M.

M. Tanaka, and M. Shigematsu, "Chirp compensation using four-wave mixing and its application to 10-Gb/s directly modulated signal transmission over SMF," IEEE Photon. Technol. Lett. 16, 1957-1959 (2004).
[CrossRef]

Tucker, R. S.

J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
[CrossRef]

Ueno, Y.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Wang, Y.

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

Way, W. I.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Wiesenfeld, J. M.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
[CrossRef]

Willner, A. E.

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

Wu, J.

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Yan, L.-S.

L.-S. Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and AlanE. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005).
[CrossRef]

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

Yan, Y.

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Yin, L.

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Yi-Yan, A.

M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990).
[CrossRef]

Yu, C.

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

Yu, Q.

Zhou, Y.

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Electron. Lett. (2)

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003).
[CrossRef]

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000).
[CrossRef]

M. Tanaka, and M. Shigematsu, "Chirp compensation using four-wave mixing and its application to 10-Gb/s directly modulated signal transmission over SMF," IEEE Photon. Technol. Lett. 16, 1957-1959 (2004).
[CrossRef]

J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
[CrossRef]

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).

Other (6)

S. B. Jun, K. J. Park, H. Kim, H. S. Chung, J. H. Lee, and Y. C. Chung, "Passive optical NRZ-to-RZ converter," in Proc. Optical Fiber Communication Conference (OFC), (2004), ThN1.

G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleaver," in Proc. Optical Fiber Communication Conference (OFC), (2006), JThB32.

H. Nguyen Tan, M. Matsuura, and N. Kishi, "Pulsewidth tunable NRZ-to-RZ data format conversion by combination of SOA- and fiber-based switches," in Proc. OptoElectronics and Communications Conference (OECC/ACOFT), (2008), TuF-5.

M. Matsuura, K. Chida, N. Kishi, and T. Miki, "Pulse-width tunable waveform conversion by combination of fiber- and SOA-based switches," in Proc. Asia-Pacific Conference on Communications (APCC), (2007), FPM 2-1-1.

X. Yang, R. J. Manning, A. K. Mishra, R. P. Webb, A. D. Ellis, and D. Cotter, "Application of semiconductor optical amplifiers in high-speed all-optical NRZ to RZ format conversion," in Proc. International Conference on Transparent Optical Networks (ICTON), (2007), pp. 228-231.

L. Boivin, and G. J. Pendock, "Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle," in Proc. Optical Amplifiers and its Applications (OAA), (1998), pp. 292-295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the wavelength and pulsewidth tunable NRZ-to-RZ conversion by combination of SOA- and fiber-based switches. PC: Polarization Controller, PBS: Polarization Beam Splitter, BPF: Band Pass Filter, DL: Delay Line.

Fig. 2.
Fig. 2.

Eye diagrams of the converted RZ signals for various time delay settings of (a) 20 ps, (b) 40 ps, (c) 60 ps, and (d) 80 ps (50 ps/div).

Fig. 3.
Fig. 3.

Measured BERs of the converted RZ signals with different time delay settings. The inset shows BER comparisons of the 20 ps converted RZ signal with the original NRZ, and the conventional 20 ps RZ data signal generated from EAM.

Fig. 4.
Fig. 4.

Receiver sensitivity at BER of 10-9 of the original NRZ and the converted RZ signals with different time delay settings Δt for various SSMF transmission lengths.

Fig. 5.
Fig. 5.

The optimal pulsewidths of the converted RZ signal and its corresponding power penalties at BER of 10-9 compared with the conventional NRZ signal in various SSMF transmission lengths.

Tables (1)

Tables Icon

Table 1. Characteristics of highly nonlinear fiber.

Metrics