Abstract

We present a study aimed at developing a label-free optical fiber biosensor for detection and quantification of biomolecules in real-time. The biosensor based on a Tilted Fiber Bragg Grating (TFBG) transduces a binding event between the probe and target molecules into a change in the refractive index of the medium surrounding the fiber. This work describes the experimental results obtained with three methods for immobilizing biomolecular probes on a TFBG silica cladding surface. Bovine serum albumin (BSA) and anti-BSA are used to assess the performances of the TFBG based biosensor in each configuration.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
    [CrossRef] [PubMed]
  2. Y. Y. Shevchenko, D. A. Blair, M. C. Derosa, and J. Albert, "DNA Target Detection Using Gold-Coated Tilted Fiber Bragg Gratings in Aqueous Media," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMJ4, (2008). http://www.opticsinfobase.org/abstractcfm?URI=CLEO-2008-CMJ4.
  3. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonte, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, "Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement," Opt. Express 14,10359-10370 (2006).
    [CrossRef] [PubMed]
  4. S. Maguis, G. Laffont, P. Ferdinand, M. C. Millot, K. Kham, and S. Peralta, "Tilted fibre Bragg gratings for the specific detection of biological species," Proceedings of 19th Int. Conf. Optical Fiber Sensors Perth, Australia, April 14-18, 2008.
  5. http://www.cargille.com
  6. X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
    [CrossRef] [PubMed]
  7. C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
    [CrossRef]
  8. M. Lee and D. R. Walt, "A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors," Anal. Biochem. 282, 142-146 (2000).
    [CrossRef] [PubMed]
  9. S. Löfås and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc. 21, 1526-1528 (1990).
  10. D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
    [CrossRef] [PubMed]
  11. R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
    [CrossRef] [PubMed]
  12. D. S. Salloum and J. B. Schlenoff, "Protein adsorption modalities on polyelectrolyte multilayers," Biomacromolecules 5, 1089-1096 (2004).
    [CrossRef]
  13. M. Y. Rubtsova, G. V. Kovba, and A. M. Egorov, "Chemiluminescent biosensors based on porous supports with immobilized peroxidase," Biosens. Bioelectron. 13, 75-85 (1998).
    [CrossRef] [PubMed]
  14. B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Prog. Polym. Sci. 25, 677-710 (2000).
    [CrossRef]
  15. R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
    [CrossRef]
  16. D. G. Kinniburgh, "General purpose adsorption isotherms," Environ. Sci. Technol. 20, 895-904 (1986).
    [CrossRef] [PubMed]
  17. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
    [CrossRef]
  18. C. A. Barrios, M. J. Bañuls, V. Gonz’alez-Pedro, K. B. Gylfason, B. S’anchez, A. Griol, A. Maquieira, H. Sohlstr?om, M. Holgado, and R. Casquel, "Label-free optical biosensing with slot-waveguides," Opt. Lett. 33, 708-710 (2008).
    [CrossRef] [PubMed]
  19. J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
    [CrossRef]

2008

2006

2004

D. S. Salloum and J. B. Schlenoff, "Protein adsorption modalities on polyelectrolyte multilayers," Biomacromolecules 5, 1089-1096 (2004).
[CrossRef]

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

2002

R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
[CrossRef] [PubMed]

R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
[CrossRef]

2000

B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Prog. Polym. Sci. 25, 677-710 (2000).
[CrossRef]

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

M. Lee and D. R. Walt, "A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors," Anal. Biochem. 282, 142-146 (2000).
[CrossRef] [PubMed]

X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
[CrossRef] [PubMed]

1998

D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
[CrossRef] [PubMed]

M. Y. Rubtsova, G. V. Kovba, and A. M. Egorov, "Chemiluminescent biosensors based on porous supports with immobilized peroxidase," Biosens. Bioelectron. 13, 75-85 (1998).
[CrossRef] [PubMed]

1990

S. Löfås and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc. 21, 1526-1528 (1990).

1986

D. G. Kinniburgh, "General purpose adsorption isotherms," Environ. Sci. Technol. 20, 895-904 (1986).
[CrossRef] [PubMed]

1940

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
[CrossRef]

Arregui, F. J.

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Bañuls, M. J.

Bariain, C.

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Barrios, C. A.

Bentley, W. E.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Blyth, J.

D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
[CrossRef] [PubMed]

Brittain, W. J.

B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Prog. Polym. Sci. 25, 677-710 (2000).
[CrossRef]

Brunauer, S.

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
[CrossRef]

Casquel, R.

Cosnier, S.

R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
[CrossRef] [PubMed]

Cullen, D. C.

D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
[CrossRef] [PubMed]

Davis, C. C.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

DeLisa, M. P.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Deming, L. S.

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
[CrossRef]

Deming, W. E.

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
[CrossRef]

Dewynter, V.

Disley, D. M.

D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
[CrossRef] [PubMed]

Dyer, D. J.

R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
[CrossRef]

Egorov, A. M.

M. Y. Rubtsova, G. V. Kovba, and A. M. Egorov, "Chemiluminescent biosensors based on porous supports with immobilized peroxidase," Biosens. Bioelectron. 13, 75-85 (1998).
[CrossRef] [PubMed]

Elosua, C.

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Farmerie, W.

X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
[CrossRef] [PubMed]

Ferdinand, P.

Garstecki, P.

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

Gonz’alez-Pedro, V.

Green, J. B.

R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
[CrossRef]

Griol, A.

Gylfason, K. B.

Holgado,, M.

Johnsson, B.

S. Löfås and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc. 21, 1526-1528 (1990).

Kinniburgh, D. G.

D. G. Kinniburgh, "General purpose adsorption isotherms," Environ. Sci. Technol. 20, 895-904 (1986).
[CrossRef] [PubMed]

Kovba, G. V.

M. Y. Rubtsova, G. V. Kovba, and A. M. Egorov, "Chemiluminescent biosensors based on porous supports with immobilized peroxidase," Biosens. Bioelectron. 13, 75-85 (1998).
[CrossRef] [PubMed]

Kriebel, J. K.

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

Laffont, G.

Laguna, M.

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Lee, M.

M. Lee and D. R. Walt, "A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors," Anal. Biochem. 282, 142-146 (2000).
[CrossRef] [PubMed]

Liu, X.

X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
[CrossRef] [PubMed]

Löfås, S.

S. Löfås and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc. 21, 1526-1528 (1990).

Luquin, A.

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Maquieira, A.

Marks, R. S.

R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
[CrossRef] [PubMed]

Matias, I. R.

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Mayer, M.

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

Novoa, A.

R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
[CrossRef] [PubMed]

Phan Huy, M. C.

Pilevar, S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Rubtsova, M. Y.

M. Y. Rubtsova, G. V. Kovba, and A. M. Egorov, "Chemiluminescent biosensors based on porous supports with immobilized peroxidase," Biosens. Bioelectron. 13, 75-85 (1998).
[CrossRef] [PubMed]

S’anchez, B.

Salloum, D. S.

D. S. Salloum and J. B. Schlenoff, "Protein adsorption modalities on polyelectrolyte multilayers," Biomacromolecules 5, 1089-1096 (2004).
[CrossRef]

Schlenoff, J. B.

D. S. Salloum and J. B. Schlenoff, "Protein adsorption modalities on polyelectrolyte multilayers," Biomacromolecules 5, 1089-1096 (2004).
[CrossRef]

Schmidt, R.

R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
[CrossRef]

Schuster, S.

X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
[CrossRef] [PubMed]

Shiloach, M.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Sirkis, J. S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Sohlstr?om, H.

Tan, W. K.

X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
[CrossRef] [PubMed]

Teller, E.

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
[CrossRef]

Thomassey, D.

R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
[CrossRef] [PubMed]

Walt, D. R.

M. Lee and D. R. Walt, "A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors," Anal. Biochem. 282, 142-146 (2000).
[CrossRef] [PubMed]

Whitesides, G. M.

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

Yang, J.

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

You, H. X.

D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
[CrossRef] [PubMed]

Zhang, Z.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Zhao, B.

B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Prog. Polym. Sci. 25, 677-710 (2000).
[CrossRef]

Zhao, T.

R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
[CrossRef]

Anal. Bioanal. Chem.

R. S. Marks, A. Novoa, D. Thomassey, and S. Cosnier, "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole-biotin)," Anal. Bioanal. Chem. 374, 1056-1063 (2002).
[CrossRef] [PubMed]

Anal. Biochem.

X. Liu, W. Farmerie, S. Schuster, and W. K. Tan, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Anal. Biochem. 283, 56-63 (2000).
[CrossRef] [PubMed]

M. Lee and D. R. Walt, "A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors," Anal. Biochem. 282, 142-146 (2000).
[CrossRef] [PubMed]

Anal. Chem.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, "Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor," Anal. Chem. 72, 2895-2900 (2000).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed

J. Yang, M. Mayer, J. K. Kriebel, P. Garstecki, and G. M. Whitesides, "Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles," Angew. Chem. Int. Ed 43, 1555-1558 (2004).
[CrossRef]

Biomacromolecules

D. S. Salloum and J. B. Schlenoff, "Protein adsorption modalities on polyelectrolyte multilayers," Biomacromolecules 5, 1089-1096 (2004).
[CrossRef]

Biosens. Bioelectron.

M. Y. Rubtsova, G. V. Kovba, and A. M. Egorov, "Chemiluminescent biosensors based on porous supports with immobilized peroxidase," Biosens. Bioelectron. 13, 75-85 (1998).
[CrossRef] [PubMed]

D. M. Disley, J. Blyth, D. C. Cullen, H. X. You, S. Eapen and, C. R. Lowe, "Covalent coupling of immunoglobulin G to a poly (vinyl) alcohol-poly (acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor," Biosens. Bioelectron. 13, 383-396 (1998).
[CrossRef] [PubMed]

Environ. Sci. Technol.

D. G. Kinniburgh, "General purpose adsorption isotherms," Environ. Sci. Technol. 20, 895-904 (1986).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a Theory of the van der Waals Adsorption of Gases," J. Am. Chem. Soc. 62, 1723-1732 (1940).
[CrossRef]

J. Chem. Soc.

S. Löfås and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc. 21, 1526-1528 (1990).

Langmuir

R. Schmidt, T. Zhao, J. B. Green, and D. J. Dyer, "Photoinitiated polymerization of styrene from self-assembled monolayers on gold," Langmuir 18, 1281-1287 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Polym. Sci.

B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Prog. Polym. Sci. 25, 677-710 (2000).
[CrossRef]

Sens. Actuators B

C. Elosua, C. Bariain, I. R. Mat?as, F. J. Arregui, A. Luquin, and M. Laguna, "Volatile alcoholic compounds fibre optic nanosensor," Sens. Actuators B 115, 444-449 (2006).
[CrossRef]

Other

S. Maguis, G. Laffont, P. Ferdinand, M. C. Millot, K. Kham, and S. Peralta, "Tilted fibre Bragg gratings for the specific detection of biological species," Proceedings of 19th Int. Conf. Optical Fiber Sensors Perth, Australia, April 14-18, 2008.

http://www.cargille.com

Y. Y. Shevchenko, D. A. Blair, M. C. Derosa, and J. Albert, "DNA Target Detection Using Gold-Coated Tilted Fiber Bragg Gratings in Aqueous Media," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMJ4, (2008). http://www.opticsinfobase.org/abstractcfm?URI=CLEO-2008-CMJ4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Difference in wavelength between two consecutive resonances of the transmission spectrum of a TFBG in air as a function of wavelength resonances. The wavelength measurement error is ±1 pm.

Fig. 2.
Fig. 2.

Transmission spectrum of a TFBG in air (S 1) and water (S 2). Continuum of frequencies obtained from the Fourier transform of the transmission spectrum in air (TF 1) and water (TF 2).

Fig. 3.
Fig. 3.

Real time detection system used in laboratory experiments to characterize the biofunctionalization process of TFBG transducers.

Fig. 4.
Fig. 4.

Calibration curve for the conversion of measured frequencies into refractive index values. The refractive index measurement error is ±0.0002 refractive index unit.

Fig. 5.
Fig. 5.

Schema of a biosensor using modified surface (interlayer) biofunctionalized with proteins as bioreceptor. Schemas of (a) BSA binding to the electrostatic self-assembled film, (b) extravidin binding to the electrostatic self-assembled film and linkage with biotinylated BSA protein probes via avidin-biotin interactions, (c) extravidin binding to the polyacrylic-acid film and linkage with biotinylated BSA protein probes via avidin-biotin interactions.

Fig. 6.
Fig. 6.

Schema of self-assembly process.

Fig. 7.
Fig. 7.

Real-time monitoring of polyelectrolyte multilayer film growth and adsorption of the BSA. The standard deviation associated with the refractive index mean values in PBS is ±10-5 refractive index unit.

Fig. 8.
Fig. 8.

Real time monitoring of the growth of polyacrylic-acid from the TFGB-surface under UV irradiation.

Fig. 9.
Fig. 9.

Schema of “grafting from” process.

Fig. 10.
Fig. 10.

Real-time monitoring of the antibody detection for samples containing increasing concentrations of anti-BSA in PBS. The immobilization technique used for the data is the covalent bonding combined with avidin-biotin linkage biofunctionalization method (method 3). The standard deviation associated with the refractive index mean values in PBS is ±10-5 refractive index unit.

Fig. 11.
Fig. 11.

Experimental responses (dots) and associated Langmuir isotherms (solid and dashed curves) of the biosensors resulting from (1) only ionic bonding, (2) ionic bonding combined with avidin-biotin linkage and (3) covalent bonding combined with avidin-biotin linkage biofunctionalization methods. The first data sets (blue dots and curves) and the second data sets (red dots and curves) are ploted for methods (1) and (2). Experimental responses used to study the refractive index shift as a function of anti-BSA concentration correspond to refractive index mean values in PBS. The standard deviation associated with the refractive index mean values in PBS is ±10-5 refractive index unit.

Tables (3)

Tables Icon

Table 1. Isotherm parameters obtained with the Langmuir model applied to the biosensors resulting from (1) only ionic bonding, (2) ionic bonding combined with avidin-biotin linkage and (3) covalent bonding combined with avidin-biotin linkage biofunctionalization methods.

Tables Icon

Table 2. Sensitivities and detection limits calculated from isotherm parameters applied to the biosensors resulting from (1) only ionic bonding, (2) ionic bonding combined with avidin-biotin linkage and (3) covalent bonding combined with avidin-biotin linkage biofunctionalization methods.

Tables Icon

Table 3. Anti-BSA concentration limits calculated from isotherm parameters applied to the biosensors resulting from (1) only ionic bonding, (2) ionic bonding combined with avidin-biotin linkage and (3) covalent bonding combined with avidin-biotin linkage biofunctionalization methods.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n max ( KC 1 + KC )
S = Δ n max σ max
σ max = M N A · 1 d 2 = 1700 pg mm 2
σ lim = R S
C lim = 1 K ( R Δ n max R )

Metrics