Abstract

We propose a novel line coding combination (Inverse RZ coding in downlink and RZ in uplink) that extends the reach of WDM Passive Optical Networks based on Reflective SOAs with no in-line amplification. We achieved full downstream remodulation even when feeding the reflective SOA with power levels as low as -35dBm, thus increasing the system power budget. We experimentally assessed this scheme for a fully passive, full-duplex and symmetrical 1.25Gb/s WDM-PON over a 80km G.652 feeder.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Davey, D. Payne, P. Barker, D. Nesset, S. Appathurai, T. Gilfedder, A. Rafael, and P. Healey, "Next Generation Extended Reach PON," in OFC/NFOEC 2008, pp. 1-25 (2008).
  2. R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).
  3. K. Cho, Y. Takushima, K. Ryong, and Y. Chung, "Operating Wavelength Range of 1.25-Gb/s WDM PON Implemented by using Uncooled RSOA’s," OFC/NFOEC 2008 (2008).
  4. W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
    [CrossRef]
  5. N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
    [CrossRef]
  6. C. Arellano, C. Langer, and J. Prat, "Optical Network Units based on Semiconductor Optical Amplifiers in Single-Wavelength Single-Fiber Access Networks," Breitbandversorgung in Deutschland-wie schaffen wir den Anschluss? (2005).
  7. X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
    [CrossRef]
  8. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
    [CrossRef]
  9. E. Wong, K. Lee, and T. Anderson, "Directly-Modulated Self-Seeding Reflective SOAs as Colorless Transmitters for WDM Passive Optical Networks," J. Lightwave Technol. 10, 67-74 (2007).
    [CrossRef]
  10. N. Deng, C. Chan, and L. Chen, "A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation," Opt. Fiber Technol. 13, 18-21 (2007).
    [CrossRef]
  11. H. Chung, B. Kim, H. Park, S. Chang, M. Chu, and K. Kim, "Effects of inverse-RZ and Manchester code on a wavelength re-used WDM-PON," Proc. LEOS 2006 pp. 298-299 (2006).
  12. C. Chow, Y. Liu, and C. Kwok, "Signal Remodulation with High Extinction Ratio 10-Gb/s DPSK signal for DWDM-PONs," OFC/NFOEC 2008 (2008).

2007 (4)

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
[CrossRef]

E. Wong, K. Lee, and T. Anderson, "Directly-Modulated Self-Seeding Reflective SOAs as Colorless Transmitters for WDM Passive Optical Networks," J. Lightwave Technol. 10, 67-74 (2007).
[CrossRef]

N. Deng, C. Chan, and L. Chen, "A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation," Opt. Fiber Technol. 13, 18-21 (2007).
[CrossRef]

2006 (1)

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

2005 (1)

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

2001 (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Anderson, T.

E. Wong, K. Lee, and T. Anderson, "Directly-Modulated Self-Seeding Reflective SOAs as Colorless Transmitters for WDM Passive Optical Networks," J. Lightwave Technol. 10, 67-74 (2007).
[CrossRef]

Calabretta, N.

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

Chan, C.

N. Deng, C. Chan, and L. Chen, "A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation," Opt. Fiber Technol. 13, 18-21 (2007).
[CrossRef]

Chen, L.

N. Deng, C. Chan, and L. Chen, "A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation," Opt. Fiber Technol. 13, 18-21 (2007).
[CrossRef]

Cheng, T.

X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
[CrossRef]

Cheng, X.

X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
[CrossRef]

Cho, S.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Ciaramella, E.

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

Contestabile, G.

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

Deng, N.

N. Deng, C. Chan, and L. Chen, "A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation," Opt. Fiber Technol. 13, 18-21 (2007).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Jeong, G.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Jeppesen, P.

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Kim, B.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Kim, C.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Kjaer, R.

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Lee, J.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Lee, K.

E. Wong, K. Lee, and T. Anderson, "Directly-Modulated Self-Seeding Reflective SOAs as Colorless Transmitters for WDM Passive Optical Networks," J. Lightwave Technol. 10, 67-74 (2007).
[CrossRef]

Lee, W.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Lu, C.

X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
[CrossRef]

Monroy, I. T.

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Oxenlowe, L. K.

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

Palsdottir, B.

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

Park, M.

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Presi, M.

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

Proietti, R.

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Wang, Y.

X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
[CrossRef]

Wong, E.

E. Wong, K. Lee, and T. Anderson, "Directly-Modulated Self-Seeding Reflective SOAs as Colorless Transmitters for WDM Passive Optical Networks," J. Lightwave Technol. 10, 67-74 (2007).
[CrossRef]

Electron. Lett. (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

IEEE Photon. Tehcnol. Lett. (2)

W. Lee, M. Park, S. Cho, J. Lee, C. Kim, G. Jeong, and B. Kim, "Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers," IEEE Photon. Tehcnol. Lett. 17, 2460-2462 (2005).
[CrossRef]

N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella, "A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG," IEEE Photon. Tehcnol. Lett. 19, 1227-1229 (2007).
[CrossRef]

J. Lightwave Technol. (1)

E. Wong, K. Lee, and T. Anderson, "Directly-Modulated Self-Seeding Reflective SOAs as Colorless Transmitters for WDM Passive Optical Networks," J. Lightwave Technol. 10, 67-74 (2007).
[CrossRef]

J. Lightwave. Technol (1)

X. Cheng, Y. Wang, T. Cheng, and C. Lu, "WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission," J. Lightwave. Technol 25, 3669-3677 (2007).
[CrossRef]

LEOS (1)

R. Kjaer, I. T. Monroy, L. K. Oxenlowe, P. Jeppesen, and B. Palsdottir, "Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification," LEOS 2006 pp. 703-704 (2006).

Opt. Fiber Technol. (1)

N. Deng, C. Chan, and L. Chen, "A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation," Opt. Fiber Technol. 13, 18-21 (2007).
[CrossRef]

Other (5)

H. Chung, B. Kim, H. Park, S. Chang, M. Chu, and K. Kim, "Effects of inverse-RZ and Manchester code on a wavelength re-used WDM-PON," Proc. LEOS 2006 pp. 298-299 (2006).

C. Chow, Y. Liu, and C. Kwok, "Signal Remodulation with High Extinction Ratio 10-Gb/s DPSK signal for DWDM-PONs," OFC/NFOEC 2008 (2008).

K. Cho, Y. Takushima, K. Ryong, and Y. Chung, "Operating Wavelength Range of 1.25-Gb/s WDM PON Implemented by using Uncooled RSOA’s," OFC/NFOEC 2008 (2008).

C. Arellano, C. Langer, and J. Prat, "Optical Network Units based on Semiconductor Optical Amplifiers in Single-Wavelength Single-Fiber Access Networks," Breitbandversorgung in Deutschland-wie schaffen wir den Anschluss? (2005).

R. Davey, D. Payne, P. Barker, D. Nesset, S. Appathurai, T. Gilfedder, A. Rafael, and P. Healey, "Next Generation Extended Reach PON," in OFC/NFOEC 2008, pp. 1-25 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

WDM-PON architecture with IRZ/RZ coding. The green inset shows the proposed remodulation principle.

Fig. 2.
Fig. 2.

Experimental Setup: TL: Tunable Laser; IM: Intensity Modulator; PPG: Pulse Pattern Generator; VOA: Variable Optical Attenuator; OC: Optical Circulator; SMF: Single Mode Fiber; ODL: Optical Delay Line; OTF: Tunable Filter; PRE: Preamplifier (EDFA); PD: Photodiode; LPF: 4 th -order Bessel Low Pass Filter

Fig. 3.
Fig. 3.

Eye-diagrams of the down/up-stream channels. Downstream: a) back-to-back; b) after 80km SMF; c) after 80km SMF and RSOA on. Upstream back-to-back for three seeding power levels: d) -25dBm; e) -30dBm; f) -35dBm. All eye-diagrams have been recorded with a 1.87GHz electrical post-detection filter on a time scale of 100ps/div.

Fig. 4.
Fig. 4.

BER of downstream (a) and upstream (b). White symbols refer to back-to-back conditions. Black ones indicate BER after transmission over the 80 km feeder. For the upstream case, the BER measurements are reported for three different RSOA seeding power levels (-25,-30,-35 dBm)

Metrics