Abstract

We demonstrate that the resonance wavelength of fiber Bragg gratings photowritten in the core of microstructured optical fibers can be efficiently stabilized versus temperature by inserting suitable refractive index materials with a negative thermal sensitivity into the holes. By these means, the effective index of the guided mode undergoes thermal variations which counterbalance the effect of the grating period thermal drift. The residual excursion of the resonance wavelength can be limited to less than ± 10 pm over a 70 ℃ range of temperature into Microstructured Optical Fibers (MOFs) having realistic geometrical parameters, and using existing refractive index materials. Low cost passively stabilized reflectors with insertion loss lower than 0.3 dB can be realized by splicing single mode fibers at both ends of a short length of a filled MOF including the fiber Bragg grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kali, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensors (London, Artech House, 1999).
  2. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 4, 823-825 (1989).
    [CrossRef]
  3. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
    [CrossRef]
  4. M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
    [CrossRef]
  5. V. Mizrahi, "Components and devices for optical communications based on UV-written-fiber phase gratings," Optical Fiber Communications Conference, San Jose (1993).
  6. A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
    [CrossRef]
  7. L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).
  8. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, "A novel negative expansion substrate material for athermalizing fiber Bragg gratings," 22nd European Conference on Optical Communication (ECOC'96, Oslo), MoB3.5, 1.61-1.64, (1996).
  9. T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
    [CrossRef]
  10. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, "Passive temperature-compensating package for optical fiber gratings," Appl. Opt. 34, 6859-6861 (1995).
    [CrossRef] [PubMed]
  11. Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
    [CrossRef]
  12. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  13. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructure fibers," Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  14. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  15. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
    [CrossRef]
  16. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, "Strain and temperature characterization of photonic crystal fiber gratings," Opt. Lett. 30, 1785-1787 (2005).
    [CrossRef] [PubMed]
  17. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, "Passive temperature-compensating technique for microstructured fiber Bragg gratings," to be published in IEEE Sensors Journal, August 2008.
  18. J. H. Wray and J. T. Neu, "Refractive index of several glasses as a function of wavelength and temperature," J. Opt. Soc. Am. 59, 774-776 (1969).
    [CrossRef]
  19. Internet site: http://www.cargille.com
  20. Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
    [CrossRef]
  21. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
    [CrossRef]
  22. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  23. F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
    [CrossRef]
  24. Internet site: http://www.accuratus.com/fused.html.
  25. S. H. Kim and C. K. Hwangbo, "Temperature dependence of transmission center wavelength of narrow bandpass filters prepared by plasma ion assisted deposition," J. Korean Phys. Soc. 45, 93-98 (2004).
  26. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  27. D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers," J. Opt. Soc. Am. 68, 103-109 (1978).
    [CrossRef]
  28. Internet site: http://www.chemoptics.co.kr.
  29. D. M. Yeo and S. Y. Shin, "Polymer-silica hybrid 1X2 thermooptic switch with low crosstalk," Opt. Commun. 267, 388-396 (2006).
    [CrossRef]
  30. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004).
    [CrossRef] [PubMed]
  31. D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
    [CrossRef]
  32. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003).
    [PubMed]

2007

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

2006

Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
[CrossRef]

D. M. Yeo and S. Y. Shin, "Polymer-silica hybrid 1X2 thermooptic switch with low crosstalk," Opt. Commun. 267, 388-396 (2006).
[CrossRef]

2005

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, "Strain and temperature characterization of photonic crystal fiber gratings," Opt. Lett. 30, 1785-1787 (2005).
[CrossRef] [PubMed]

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

2004

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004).
[CrossRef] [PubMed]

S. H. Kim and C. K. Hwangbo, "Temperature dependence of transmission center wavelength of narrow bandpass filters prepared by plasma ion assisted deposition," J. Korean Phys. Soc. 45, 93-98 (2004).

2003

2002

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

2000

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

1999

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructure fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

1997

T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

1996

1995

1991

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

1989

G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 4, 823-825 (1989).
[CrossRef]

1978

1969

André, P. S. B.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Atkin, D. M.

Bigot, L.

Birks, T. A.

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Bonnel, M.

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

Bosc, D.

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

Bourliaguet, B.

Bréchet, F.

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Brown, A.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Buckley, E.

Canning, J.

Chummun-Courbet, N.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Croteau, A.

da Rocha, J. R. F.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Devoldère, N.

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

Domachuk, P.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Dong, X.

Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
[CrossRef]

Douay, M.

Doyle, A.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Eggleton, B. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructure fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Émond, F.

Favennec, J. L.

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Fujinaga, S.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 4, 823-825 (1989).
[CrossRef]

Groothoff, N.

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Guy, A.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Hattori, Y.

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
[CrossRef]

Hwangbo, C. K.

S. H. Kim and C. K. Hwangbo, "Temperature dependence of transmission center wavelength of narrow bandpass filters prepared by plasma ion assisted deposition," J. Korean Phys. Soc. 45, 93-98 (2004).

Inoue, A.

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

Iwashima, T.

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

Juignet, C.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Kai, G.

Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
[CrossRef]

Kalinowski, H. J.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Kerrinckx, E.

Kim, S. H.

S. H. Kim and C. K. Hwangbo, "Temperature dependence of transmission center wavelength of narrow bandpass filters prepared by plasma ion assisted deposition," J. Korean Phys. Soc. 45, 93-98 (2004).

Kitamura, N.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

Kitaoka, T.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

Knight, J. C.

Krug, P. A.

Li, F.

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Lie, J.

Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
[CrossRef]

Lima, M. J. N.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
[CrossRef]

Liu, L.

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Liu, Y.

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Lyttikainen, K.

Lyytikainen, K.

Mägi, E. C.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Marcou, J.

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Marcuse, D.

Marshall, G. D.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Martelli, C.

Matsuoka, J.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 4, 823-825 (1989).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 4, 823-825 (1989).
[CrossRef]

Neu, J. T.

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Nishimura, N.

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

Nogueira, R. N.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Ouellette, F.

Pagnoux, D.

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Painchaud, Y.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Paré, C.

Pavy, D.

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

Pelletier, T.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

Pinto, J. L.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Proulx, A.

Quiquempois, Y.

Roy, P.

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Russell, P. S. J.

Shigematsu, M.

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

Shin, S. Y.

D. M. Yeo and S. Y. Shin, "Polymer-silica hybrid 1X2 thermooptic switch with low crosstalk," Opt. Commun. 267, 388-396 (2006).
[CrossRef]

Silva, J. C. C.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Spalter, S.

Steinvurzel, P.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Strasser, T. A.

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
[CrossRef]

Teixeira, A. L. J.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Thorncraft, D. A.

Vallée, R.

Westbrook, P. S.

Windeler, R. S.

Withford, M. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Wray, J. H.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yamahita, H.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yeo, D. M.

D. M. Yeo and S. Y. Shin, "Polymer-silica hybrid 1X2 thermooptic switch with low crosstalk," Opt. Commun. 267, 388-396 (2006).
[CrossRef]

Yoffe, G. W.

Yuan, S.

Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
[CrossRef]

Zagari, J.

Zhang, H.

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
[CrossRef]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
[CrossRef]

Zhao, Q.

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Appl. Opt.

Appl. Phys. Lett.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Electron. Lett.

A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002).
[CrossRef]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997)
[CrossRef]

J. Korean Phys. Soc.

S. H. Kim and C. K. Hwangbo, "Temperature dependence of transmission center wavelength of narrow bandpass filters prepared by plasma ion assisted deposition," J. Korean Phys. Soc. 45, 93-98 (2004).

J. Non-Cryst. Solids

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991).
[CrossRef]

J. Opt. Soc. Am.

Mater. Sci. Eng.

D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999).
[CrossRef]

Microwave Opt. Technol. Lett.

M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005).
[CrossRef]

Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003).
[CrossRef]

Opt. Commun.

D. M. Yeo and S. Y. Shin, "Polymer-silica hybrid 1X2 thermooptic switch with low crosstalk," Opt. Commun. 267, 388-396 (2006).
[CrossRef]

Opt. Express

Opt. Fib. Tech.

L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Opt. Fiber Technol.

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Opt. Lett.

Polymer

Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006).
[CrossRef]

Other

Internet site: http://www.cargille.com

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, "Passive temperature-compensating technique for microstructured fiber Bragg gratings," to be published in IEEE Sensors Journal, August 2008.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, "A novel negative expansion substrate material for athermalizing fiber Bragg gratings," 22nd European Conference on Optical Communication (ECOC'96, Oslo), MoB3.5, 1.61-1.64, (1996).

A. Othonos and K. Kali, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensors (London, Artech House, 1999).

V. Mizrahi, "Components and devices for optical communications based on UV-written-fiber phase gratings," Optical Fiber Communications Conference, San Jose (1993).

Internet site: http://www.chemoptics.co.kr.

Internet site: http://www.accuratus.com/fused.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic representation of the cross section of a photosensitive microstructured optical fiber with a RIM inserted into its holes.

Fig. 2.
Fig. 2.

Bragg wavelength shift for a FBG photowritten in different MOFs (rGe=2.5 µm, Δn=8.10-3, D=5 µm, d varied from 1 µm to 3 µm) ; the material inserted into the holes is such that nmat-ref=1.43, dnmat/dT=-4.10-4 °C-1.

Fig. 3.
Fig. 3.

Bragg wavelength shift for a FBG photowritten in different MOFs (rGe=2.5 µm, Δn=8.10-3, d=1.5 µm, D varied from 4 µm to 5 µm) ; the material inserted into the holes is such that nmat-ref=1.43, dnmat/dT=-4.10-4 C-1.

Fig. 4.
Fig. 4.

Bragg wavelength shift for a FBG photowritten in different MOFs (rGe=2.5 µm, d=2 µm, D=4.5 µm and Δn varied from 10 10-3 to 18 10-3); the material inserted into the holes is such that nmat-ref=1.43, dnmat/dT=-4.10-4 °C-1.

Fig. 5.
Fig. 5.

(a) Mode field radius in the doped core with Δn=8.10-3 versus rGe; (b) Bragg wavelength shift for a FBG photowritten in different MOFs (d=2 µm, D=5 µm, Δn=8.10-3 and rGe varied from 2 µm to ~4 µm); the material inserted into the holes is such that nmat-ref=1.43, dnmat/dT=-4.10-4 °C-1.

Fig. 6.
Fig. 6.

Bragg wavelength shift for a FBG photowritten in different MOFs (rGe=2.5 µm, D=4.5 µm and d varied from 2 µm to 3.5 µm); the material inserted into the holes is such that dnmat/dT=-4.10-4 C-1 and nmat_ref is optimised for each fiber.

Fig. 7.
Fig. 7.

Bragg wavelength shift for the different MOFs and RIMs described in Table I.

Fig. 8.
Fig. 8.

Bragg wavelength shift for the different pure silica MOFs and RIMs described in Table 2.

Fig. 9.
Fig. 9.

MOF filled with red P3HT monomers solved in chlorobenzen, as seen through a microscope (holes diameter=1.8 µm). The end seen on this picture is at the opposite of the one where the liquid was inserted (length=5 cm).

Fig. 10.
Fig. 10.

Schematic of the passive device providing a thermally stabilized reflector.

Fig. 11.
Fig. 11.

Splice loss between a SMF and different filled MOFs depicted in Tables 1 and 2 versus temperature.

Tables (2)

Tables Icon

Table 1. Sets of optogeometrical parameters of different Ge-doped MOFs with the optimal characteristics of RIMs inserted into the holes; excursion and maximum TSBW over the [-10 C, +60 C] range of temperature.

Tables Icon

Table 2. Sets of optogeometrical parameters of different pure silica MOFs with the optimal characteristics of RIMs inserted into the holes; excursion and maximum TSBW over the [-10 °C, +60 °C] range of temperature.

Metrics