Abstract

We demonstrate a method using a spatial light modulator (SLM) to generate arbitrary 2-D spatial configurations of laser induced cavitation bubbles. The SLM acts as a phase hologram that controls the light distribution in the focal plane of a microscope objective. We generate cavitation bubbles over an area of 380x380 µm2 with a 20x microscope objective through absorption of the pulsed laser light in a liquid ink solution. We demonstrate the ability to accurately position up to 34 micrometer sized bubbles using laser energies of 56 µJ.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  2. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Inst. 75, 2787-2809 (2004).
    [CrossRef]
  3. Y. Tomita and A. Shima, "High-speed photographic observations of laser-induced cavitation bubbles in water," Acustica 71,161-171 (1990).
  4. F. K. Fatemi and M. Banshkansky, "Cold atom guidance using a binary spatial light modulator," Opt. Express 14, 1368-1375 (2006).
    [CrossRef] [PubMed]
  5. V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
    [CrossRef]
  6. G. Paltauf and H. Schmidt-Kloiber, "Microcavity dynamics during laser-induced spallation of liquids and gels," Appl. Phys. A 62, 303-311 (1996).
    [CrossRef]
  7. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
    [CrossRef]
  8. T. G. Leighton, The Acoustic Bubble (Academic Press, 1997).
  9. L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Phil. Mag. 34, 94 (1917).
  10. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
    [CrossRef] [PubMed]
  11. R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
    [CrossRef]
  12. A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
    [CrossRef] [PubMed]
  13. R. Dijkink and C. D. Ohl, "Cavitation based micropump," Lab Chip, (to be published).
  14. P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
    [CrossRef] [PubMed]
  15. S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
    [CrossRef]
  16. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  17. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
    [CrossRef]
  18. E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
    [CrossRef]
  19. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
    [CrossRef]
  20. D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
    [CrossRef]
  21. R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002).
    [PubMed]
  22. W. Hentschel and W. Lauterborn, "Holographic generation of multi-bubble systems," in Cavitation and Inhomogeneities in Underwater Acoustics, Proceedings of the First International Conference Gottingen (Fed. Rep. of Germany, July 9-11, 1979).
  23. E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
    [CrossRef]
  24. C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
    [CrossRef]
  25. Y. H. Chen, H. Y. Chu, and L. I,  "Interaction and Fragmentation of Pulsed Laser Induced Microbubbles in a Narrow Gap," Phys. Rev. Lett. 96, 034505 (2006).
    [CrossRef] [PubMed]
  26. N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
    [CrossRef] [PubMed]
  27. E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
    [CrossRef] [PubMed]

2008 (2)

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

2007 (5)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
[CrossRef]

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
[CrossRef] [PubMed]

2006 (4)

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

F. K. Fatemi and M. Banshkansky, "Cold atom guidance using a binary spatial light modulator," Opt. Express 14, 1368-1375 (2006).
[CrossRef] [PubMed]

Y. H. Chen, H. Y. Chu, and L. I,  "Interaction and Fragmentation of Pulsed Laser Induced Microbubbles in a Narrow Gap," Phys. Rev. Lett. 96, 034505 (2006).
[CrossRef] [PubMed]

N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
[CrossRef] [PubMed]

2005 (4)

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

2004 (1)

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Inst. 75, 2787-2809 (2004).
[CrossRef]

2003 (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

1999 (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

1996 (1)

G. Paltauf and H. Schmidt-Kloiber, "Microcavity dynamics during laser-induced spallation of liquids and gels," Appl. Phys. A 62, 303-311 (1996).
[CrossRef]

1990 (1)

Y. Tomita and A. Shima, "High-speed photographic observations of laser-induced cavitation bubbles in water," Acustica 71,161-171 (1990).

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

1917 (1)

L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Phil. Mag. 34, 94 (1917).

Allbritton, N. L.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

Andilla, J.

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Arora, M.

N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Bae, S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

Banshkansky, M.

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Inst. 75, 2787-2809 (2004).
[CrossRef]

Bremond, N.

N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
[CrossRef] [PubMed]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Businaro, L.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

Carnicer, A.

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Chen, Y. H.

Y. H. Chen, H. Y. Chu, and L. I,  "Interaction and Fragmentation of Pulsed Laser Induced Microbubbles in a Narrow Gap," Phys. Rev. Lett. 96, 034505 (2006).
[CrossRef] [PubMed]

Chu, H. Y.

Y. H. Chen, H. Y. Chu, and L. I,  "Interaction and Fragmentation of Pulsed Laser Induced Microbubbles in a Narrow Gap," Phys. Rev. Lett. 96, 034505 (2006).
[CrossRef] [PubMed]

Cojoc, D.

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

Coppey-Moisan, M.

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

Creely, C. M.

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

Daria, V. R.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Di Fabrizio, E.

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

Dijkink, R.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

R. Dijkink and C. D. Ohl, "Cavitation based micropump," Lab Chip, (to be published).

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Durieux, C.

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Emiliani, V.

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

Eriksen, R. L.

Fatemi, F. K.

Ferrari, E.

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

Garbin, V.

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1396-1405 (2005).
[CrossRef]

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

Gluckstad, J.

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Hammer, D.X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Hellman, A. N.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Juvells, I.

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Lai, H. H.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

Le Gac, S.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
[CrossRef]

E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
[CrossRef] [PubMed]

Lohse, D.

N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
[CrossRef] [PubMed]

Martin-Badosa, E.

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Montes-Usategui, M.

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Inst. 75, 2787-2809 (2004).
[CrossRef]

Nijhuis, E.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Noojin, G.D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Ohl, C. D.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
[CrossRef]

E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
[CrossRef] [PubMed]

N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
[CrossRef] [PubMed]

R. Dijkink and C. D. Ohl, "Cavitation based micropump," Lab Chip, (to be published).

Overvelde, M.

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

Palmer, J. F.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

Paltauf, G.

G. Paltauf and H. Schmidt-Kloiber, "Microcavity dynamics during laser-induced spallation of liquids and gels," Appl. Phys. A 62, 303-311 (1996).
[CrossRef]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Petrov, D. V.

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

Phillips, K. S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

Pleguezuelos, E.

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Poot, A.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

Quinto-Su, P. A.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Rau, K. R.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Rockwell, B.A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Romanato, F.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

Schmidt-Kloiber, H.

G. Paltauf and H. Schmidt-Kloiber, "Microcavity dynamics during laser-induced spallation of liquids and gels," Appl. Phys. A 62, 303-311 (1996).
[CrossRef]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Shima, A.

Y. Tomita and A. Shima, "High-speed photographic observations of laser-induced cavitation bubbles in water," Acustica 71,161-171 (1990).

Sims, C. E.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

Singh, G. P.

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

Soler, M.

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Tomita, Y.

Y. Tomita and A. Shima, "High-speed photographic observations of laser-induced cavitation bubbles in water," Acustica 71,161-171 (1990).

Tsuji, K.

E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
[CrossRef] [PubMed]

van deb Berg, A.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

van den Berg, A.

S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
[CrossRef]

Venugopalan, V.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Vermes, I.

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

Versluis, M.

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Volpe, G.

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Yoon, H. H.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

Zahid, M.

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

Zwaan, E.

S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
[CrossRef]

E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
[CrossRef] [PubMed]

Acustica (1)

Y. Tomita and A. Shima, "High-speed photographic observations of laser-induced cavitation bubbles in water," Acustica 71,161-171 (1990).

Anal. Chem. (1)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, "Laser-induced mixing in microfluidic channels," Anal. Chem. 79, 4484-4492 (2007).
[CrossRef] [PubMed]

Appl. Phys B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999).
[CrossRef]

Appl. Phys. A (1)

G. Paltauf and H. Schmidt-Kloiber, "Microcavity dynamics during laser-induced spallation of liquids and gels," Appl. Phys. A 62, 303-311 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. Overvelde, M. Versluis. S. M. van der Meer, N. de Jong, and D. Lohse, "Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and ultra-high speed imaging," Appl. Phys. Lett. 90, 114103 (2007).
[CrossRef]

Biophys. J. (1)

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

J. Opt. A (1)

E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells "Design strategies for optimizing holographic optical tweezers set-ups," J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Lab Chip (3)

R. Dijkink and C. D. Ohl, "Cavitation based micropump," Lab Chip, (to be published).

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, "Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging," Lab Chip 8, 408-414 (2008).
[CrossRef] [PubMed]

S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, "Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement," Lab Chip 7, 1666-1672 (2007).
[CrossRef]

Micro. Eng. (2)

E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Biological samples micro-manipulation by means of optical tweezers," Micro. Eng. 78-79, 575-581 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trappping and micro-manipulation using optical vortices," Micro. Eng. 78-79, 125-131 (2005).
[CrossRef]

Nature (2)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Opt. Exp. (1)

C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, "Raman imaging of floating cells," Opt. Exp. 12, 6105-6110 (2005).
[CrossRef]

Opt. Express (3)

Phil. Mag. (1)

L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Phil. Mag. 34, 94 (1917).

Phys. Med. Bio. (1)

R. Dijkink, S. Le Gac, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation-cell interaction: trans-membrane transport and viability studies," Phys. Med. Bio. 53, 375-390 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

Y. H. Chen, H. Y. Chu, and L. I,  "Interaction and Fragmentation of Pulsed Laser Induced Microbubbles in a Narrow Gap," Phys. Rev. Lett. 96, 034505 (2006).
[CrossRef] [PubMed]

N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, "Controlled Multibubble Surface Cavitation," Phys. Rev. Lett. 96, 224501 (2006).
[CrossRef] [PubMed]

E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, "Controlled cavitation in microfluidic systems," Phys. Rev. Lett. 98, 254501 (2007).
[CrossRef] [PubMed]

Rev. Sci. Inst. (2)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Inst. 75, 2787-2809 (2004).
[CrossRef]

Other (2)

T. G. Leighton, The Acoustic Bubble (Academic Press, 1997).

W. Hentschel and W. Lauterborn, "Holographic generation of multi-bubble systems," in Cavitation and Inhomogeneities in Underwater Acoustics, Proceedings of the First International Conference Gottingen (Fed. Rep. of Germany, July 9-11, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup: The Nd:YAG laser generates a single pulse at 532 nm for a duration of 6ns. Using a few optical components (see text) arbitrary configurations of laser foci can be generated. At each laser focus a cavitation bubble is generated. The frame left of the spatial light modulator (SLM) displays the superposition of a Fresnel hologram and the hologram for the ‘five on a dice’ pattern. When focused into a small amount of light absorbing liquid five cavitation bubbles are generated which are illuminated with a homebuilt strobe consisting of a high power light emitting diode (LED) and a current amplifier.

Fig. 2.
Fig. 2.

(a). Array of 9 expanding bubbles (E=44 µJ) imaged at 1.2µs after generation; and (b) 16 expanding bubbles 1.2 us after generation (E=56 µJ). The length of the scale bar is 100 µm.

Fig. 3.
Fig. 3.

NTU logo consisting of 34 cavitation bubbles 1.2 µs, 3 µs and 5 µs after the laser pulse (E=56 µJ). The length of the scale bar is 100 µm.

Metrics