Abstract

We present the first experimental demonstration of an asynchronous digital optical regenerator at 42.67 Gbit/s. The system effectively retimes incoming asynchronous data bursts to a local clock without burst mode clock recovery and converts the signal to a desired wavelength and duty cycle.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, "Future Optical Networks," J. Lightwave Technol. 24, 4684-4696, (2006).
    [CrossRef]
  2. D. Shea, A. D. Ellis, D. Payne, R. Davey, and J. Mitchell, "10 Gbit/s PON with 100 km reach and x1024 split," Proceedings of ECOC 2003, Paper We.P.147, pp850-851, (2003).
  3. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, "Ultrahigh-Speed OTDM-Transmission Technology," J. Lightwave Technol. 24, 4616-4627 (2006).
    [CrossRef]
  4. I. Tomkos, A. Tzanakaki, J. Leuthold, A. D. Ellis, D. Bimberg, P. Petropoulos, D. Simeonidou, S. Tsadka, and P. Monteiro, "Transparent Ring Interconnection using Multi-Wavelength Processing Switches," Proceedings International Conference on Transparent Optical Networks, 2006, Nottingham, 23-23, paper MoB.1.5 (2006).
    [CrossRef]
  5. M. Sexton and A. Reid, Transmission Networking: SONET and the SDH (Artech House, 1992).
  6. C. W. Chow, A. D. Ellis, and D. Cotter, "Asynchronous Digital Optical Regenerator for 4 x 40 Gbit/s WDM to 160 Gbit/s OTDM Conversion," Opt. Express 15, 8507-8512 (2007).
    [CrossRef] [PubMed]
  7. I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
    [CrossRef]
  8. M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
    [CrossRef]
  9. D. Cotter and A. D. Ellis, "Asynchronous digital optical regeneration and networks," J. Lightwave Technol. 16, 2068-2080 (1998).
    [CrossRef]

2007 (1)

2006 (2)

1999 (1)

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

1998 (1)

1992 (1)

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Banu, M.

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Boerner, C.

Chow, C. W.

Cotter, D.

Dunlop, A. E.

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Ellis, A. D.

Ferber, S.

Gunning, P.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Kelly, A. E.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Klonidis, D.

Kroh, M.

Lucek, J. K.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Ludwig, R.

Marembert, V.

Moodie, D. G.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Nejabati, R.

O’Mahony, M. J.

Phillips, I. D.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Politi, C.

Schmidt-Langhorst, C.

Schubert, C.

Simeonidou, D.

Weber, H.-G.

Electron. Lett. (1)

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s Asynchronous Digital Optical Regenerator," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (3)

I. Tomkos, A. Tzanakaki, J. Leuthold, A. D. Ellis, D. Bimberg, P. Petropoulos, D. Simeonidou, S. Tsadka, and P. Monteiro, "Transparent Ring Interconnection using Multi-Wavelength Processing Switches," Proceedings International Conference on Transparent Optical Networks, 2006, Nottingham, 23-23, paper MoB.1.5 (2006).
[CrossRef]

M. Sexton and A. Reid, Transmission Networking: SONET and the SDH (Artech House, 1992).

D. Shea, A. D. Ellis, D. Payne, R. Davey, and J. Mitchell, "10 Gbit/s PON with 100 km reach and x1024 split," Proceedings of ECOC 2003, Paper We.P.147, pp850-851, (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Functional diagram of the ADORE using channel combination to reshape the effective gating window.

Fig. 2.
Fig. 2.

Experimental setup of the ADORE using a single EAM within a loop. The birefringence in the loop is adjusted to achieve maximum transmission (constructive interference)

Fig. 3.
Fig. 3.

Observed single polarisation switching windows for single pass through the EAM (left) and the output of the ADORE loop (right).

Fig. 4.
Fig. 4.

Bit Error Rate Performance of ADORE with automatic channel selection for a variety of different input phase delays (left) and variation in receiver sensitivity as a function of phase delay showing two independent measurements (red and blue, right).

Fig. 5.
Fig. 5.

Eye diagrams for the ADORE input (top) and output signals (bottom) at best and worst relative phases for each polarisation.

Metrics