Abstract

We report near- to far-field measurement of optical wavefronts emanating from a nanoslit formed in a thin (50 nm thick) Ag film. The evolution of optical phases is imaged using a self-interference technique in conjunction with a scanning probe method. The phase relationship of the slit-transmitted waves with respect to the direct transmission through the thin metal film is quantitatively established. The singular-phase points resulting from the interplay of slit diffraction and surface plasmons are identified in the intermediate-field region.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
    [Crossref] [PubMed]
  3. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
    [Crossref]
  4. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
    [Crossref]
  5. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006).
    [Crossref]
  6. L. Chen, J. T. Robinson, and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface,” Opt. Express 14, 12629–12636 (2006).
    [Crossref] [PubMed]
  7. F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
    [Crossref]
  8. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
    [Crossref]
  9. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
    [Crossref]
  10. Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
    [Crossref]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  12. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Berlin, 1988).
  13. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
    [Crossref]
  14. J. N. Walford, K. A. Nugent, A. Roberts, and R. E. Scholten, “Three-dimensional phase imaging with a scanning optical-fiber interferometer,” Appl. Opt. 38, 3508–3515 (1999).
    [Crossref]
  15. M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
    [Crossref] [PubMed]
  16. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett. 26, 208–210 (2001).
    [Crossref]
  17. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, (IEEE Press, New York, 2000).
    [Crossref]
  18. E. D. Palik (ed.), Optical constants of solids, (Academic Press, New York, 1998).
  19. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B  6, 4370–4379 (1972).
    [Crossref]
  20. J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006).
    [Crossref] [PubMed]

2008 (1)

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
[Crossref]

2007 (4)

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

2006 (4)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006).
[Crossref]

L. Chen, J. T. Robinson, and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface,” Opt. Express 14, 12629–12636 (2006).
[Crossref] [PubMed]

J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006).
[Crossref] [PubMed]

2004 (1)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

2003 (1)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (2)

E. D. Palik (ed.), Optical constants of solids, (Academic Press, New York, 1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B  6, 4370–4379 (1972).
[Crossref]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

Balistreri, M. L.

M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
[Crossref] [PubMed]

Bozhevolnyi, M. U.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Chang, S.-H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Chen, L.

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B  6, 4370–4379 (1972).
[Crossref]

Dändliker, R.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Dereux,

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Devaux, T. W.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Ebbesen, J. R.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, E.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

González, J. C.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Herzig, H. P.

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B  6, 4370–4379 (1972).
[Crossref]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

Jung, Y. S.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
[Crossref]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

Kihm, H. W.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Kihm, J. E.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Kim, H. K.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
[Crossref]

J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006).
[Crossref] [PubMed]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Korterik, J. P.

M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
[Crossref] [PubMed]

Krenn, I. P.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Kuipers, L.

M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
[Crossref] [PubMed]

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006).
[Crossref]

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Lipson, M.

López-Tejeira, F.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, F. J.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

Mortier, M.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

Nesci, A.

Nugent, K. A.

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Radko, S. I.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Berlin, 1988).

Roberts, A.

Robinson, J. T.

Rodrigo, L.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Schmidt, T.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
[Crossref]

Scholten, R. E.

Sergio, G.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, (IEEE Press, New York, 2000).
[Crossref]

Sun, Z.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

van Hulst, N. F.

M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
[Crossref] [PubMed]

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Walford, J. N.

Weeber, A.

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Wuenschell, J.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
[Crossref]

J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006).
[Crossref] [PubMed]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 02310(1)–(3) (2008).
[Crossref]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Nature Photon. (1)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nature Photon. 1, 53–56 (2007).
[Crossref]

Nature Phys. (3)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel,” Nature Phys. 2, 262–267 (2006).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006).
[Crossref]

F. López-Tejeira, G. Sergio, L. Rodrigo, F. J. Martín-Moreno, E. García-Vidal, T. W. Devaux, J. R. Ebbesen, I. P. Krenn, S. I. Radko, M. U. Bozhevolnyi, J. C. González, A. Weeber, and Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B  6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000).
[Crossref] [PubMed]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surfacewaves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902(1)–(4) (2007).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Other (3)

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, (IEEE Press, New York, 2000).
[Crossref]

E. D. Palik (ed.), Optical constants of solids, (Academic Press, New York, 1998).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Berlin, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Near- to far-field imaging of optical wavefronts emanating from a nanoslit formed in a thin Ag film. (a) TM polarized laser light is incident to the nanoslit (80-nm wide and 50-nm thick: inset, SEM image; scale bar, 500 nm) from the substrate side, and a nanoapertured scanning probe is scanned along the horizontal direction with a step size of 50 nm. (b) Scan profiles of the interference pattern of slit-transmitted and direct film-transmitted waves. The base line of each scan is shown as a dotted line. (c) 2D map of the interference pattern with the intensity color-coded. Red corresponds to the peak of a fringe and blue represents the valley. The periodic modulation of intensity along the vertical (y) direction is ascribed to the Fabry-Perot resonance effect of a local cavity structure formed by the probe tip and the sample surface.

Fig. 2.
Fig. 2.

Interference of slit-transmitted and direct, film-transmitted waves. (a) Wavefronts of slit-transmission (cylindrical curves) and direct film-transmission (horizontal lines). (b) A close-up view of the low-order fringe tracks in the two-wave interference model. The blue dashed curves represent the fringe tracks calculated from the two-wave model, and the red dashed curves are a FDTD simulation result. (c) The interference fringe pattern calculated from a FDTD simulation of optical transmission through a Ag nanoslit (80-nm wide and 50-nm thick): The vertical component of the Poynting vector. The inset in the top right part is a magnified view of the bottom right corner region (x: 6–10 µm; y: 0–2 µm). The dielectric constants of silica and Ag used in this simulation are from References 18 and 19.

Fig. 3.
Fig. 3.

Comparison between the measured scan profiles and FDTD simulation result. The scan profiles were measured with the same slit as in Fig. 1 at probe-surface distance of 7.6 µm, 630 nm, or 200 nm (top to bottom) with a scan step size of 10 nm. Blue curves correspond to the measurement, and red to the FDTD.

Fig. 4.
Fig. 4.

FDTD simulation of phase relationship of slit-transmission and direct film-transmission. The wavefronts of direct film-transmission (a) and slit transmission (b). (c) Comparison of optical phases of direct transmitted wave (black) and slit transmitted wave (red). The direct transmission was calculated for a 50-nm-thick Ag layer without a slit. The slit radiation was calculated from a nanoslit simulation result by subtracting the direct transmission component.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x m , n = [ ( m + ϕ 2 π ) 2 n 2 ] 1 2 λ ; y m , n = n λ
E 3 = ( 1 / i ω ε ) × H 3 = x ^ ( γ s p / i ω ε ) H 3 e γ s p y e ± i k s p x + y ^ ( ± k s p / ω ε ) H 3 e γ s p y e ± i k s p x .
S y = η H 1 2 + η H 1 H 2 cos ( kx ky 0 ϕ ) + i η H 1 H 2 sin ( kx ky 0 ϕ )
Re ( S y ) = η H 1 2 + η H 1 H 3 cos ( k sp x ϕ ) γ sp ω ε H 1 H 3 sin ( k sp x ϕ )
= η H 1 2 + η H 1 H 3 A cos ( k sp x ϕ ± α )

Metrics