Abstract

We demonstrate a Kerr-lens mode-locked Ti:sapphire laser with an additional Yb3+ doped Potassium Yttrium Tungstate crystal (Yb:KYW) in the laser cavity, where not only the pump threshold to start mode-locking but also the stable regions to maintain mode-locking can be well-controlled by varying the position of Yb:KYW nearby the confocal focus to change the intracavity Kerr-effects. The pump threshold is reduced down to 800 mW to start the mode-locking operation, which is about 27% less than that for a Ti:sapphire laser without an additional Yb:KYW.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. X. de Barros, and P. C. Becker, "Two-color synchronously mode-locked femtosecond Ti:sapphire laser," Opt. Lett. 18, 631-633 (1993).
    [CrossRef] [PubMed]
  2. C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for Self-Synchronization of Femtosecond Pulses in a Two-Color Ti:Sapphire Laser," IEEE J. Quantum Electron. 2, 473-479 (1996).
    [CrossRef]
  3. T. M. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate >1GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006).
    [CrossRef] [PubMed]
  4. A. Sennaroglu, A. M. Kowalevicz, F. X. Kärtner, and J. G. Fujimoto, "High-performance, compact, prismless, low-threshold 30-MHz Ti:Al2O3 laser," Opt. Lett. 28, 1674-1676 (2003).
    [CrossRef] [PubMed]
  5. M. S. Kirchner, T. M. Fortier, A. Bartels, and S. A. Diddams, "A low-threshold self-referenced Ti:Sapphire optical frequency comb," Opt. Express 14, 9531-9536 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9531.
    [CrossRef] [PubMed]
  6. M. Piche and F. Salin, "Self-mode locking of solid-state lasers without apertures," Opt. Lett. 18, 1041-1043 (1993).
    [CrossRef] [PubMed]
  7. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
    [CrossRef]
  8. J. Herrmann, "Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain," J. Opt. Soc. Am. B 11, 498-512 (1994).
    [CrossRef]
  9. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  10. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18, 882-885 (2001).
    [CrossRef]
  11. M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, "Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser," Opt. Commun. 183, 485-491 (2000).
    [CrossRef]
  12. X. H. Han, J. Wu, and H. P. Zeng, "Controllable harmonic mode locking and multiple pulsing in a Ti:sapphire laser," Opt. Express 16, 3686-3692 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3686.
    [CrossRef] [PubMed]
  13. V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, "Nonlinear dynamics of ultrashort pulses in solid-state lasers mode locked by self-focusing," Quantum Electron. 28, 340-343 (1998).
    [CrossRef]
  14. Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

2008 (1)

2006 (2)

2005 (1)

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

2003 (1)

2001 (2)

2000 (1)

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, "Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser," Opt. Commun. 183, 485-491 (2000).
[CrossRef]

1998 (1)

V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, "Nonlinear dynamics of ultrashort pulses in solid-state lasers mode locked by self-focusing," Quantum Electron. 28, 340-343 (1998).
[CrossRef]

1996 (1)

C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for Self-Synchronization of Femtosecond Pulses in a Two-Color Ti:Sapphire Laser," IEEE J. Quantum Electron. 2, 473-479 (1996).
[CrossRef]

1994 (2)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

J. Herrmann, "Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain," J. Opt. Soc. Am. B 11, 498-512 (1994).
[CrossRef]

1993 (2)

Angelow, G.

Bartels, A.

Becker, P. C.

Boiko, A.

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

Cha, Y. H.

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

de Barros, M. R. X.

Diddams, S. A.

Diodati, F. P.

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, "Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser," Opt. Commun. 183, 485-491 (2000).
[CrossRef]

Ell, R.

Fortier, T. M.

Fujimoto, J. G.

Furst, C.

C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for Self-Synchronization of Femtosecond Pulses in a Two-Color Ti:Sapphire Laser," IEEE J. Quantum Electron. 2, 473-479 (1996).
[CrossRef]

Han, X. H.

Herrmann, J.

Hnilo, A. A.

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, "Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser," Opt. Commun. 183, 485-491 (2000).
[CrossRef]

Ippen, E. P.

Kalashnikov, V. L.

V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, "Nonlinear dynamics of ultrashort pulses in solid-state lasers mode locked by self-focusing," Quantum Electron. 28, 340-343 (1998).
[CrossRef]

Kärtner, F. X.

Kirchner, M. S.

Kowalevicz, A. M.

Krausz, F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

Larotonda, M. A.

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, "Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser," Opt. Commun. 183, 485-491 (2000).
[CrossRef]

Laubereau, A.

C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for Self-Synchronization of Femtosecond Pulses in a Two-Color Ti:Sapphire Laser," IEEE J. Quantum Electron. 2, 473-479 (1996).
[CrossRef]

Lederer, M. J.

Lee, B. C.

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

Lee, Y. W.

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

Leitenstorfer, A.

C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for Self-Synchronization of Femtosecond Pulses in a Two-Color Ti:Sapphire Laser," IEEE J. Quantum Electron. 2, 473-479 (1996).
[CrossRef]

Luther-Davies, B.

Mikhailov, V. P.

V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, "Nonlinear dynamics of ultrashort pulses in solid-state lasers mode locked by self-focusing," Quantum Electron. 28, 340-343 (1998).
[CrossRef]

Morgner, U.

Piche, M.

Poloyko, I. G.

V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, "Nonlinear dynamics of ultrashort pulses in solid-state lasers mode locked by self-focusing," Quantum Electron. 28, 340-343 (1998).
[CrossRef]

Rhee, Y. J.

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

Salin, F.

Scheuer, V.

Schibli, T.

Sennaroglu, A.

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

Tschudi, T.

Wu, J.

Yi, J. H.

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

Yoo, B. D.

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

Zeng, H. P.

IEEE J. Quantum Electron. (2)

C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for Self-Synchronization of Femtosecond Pulses in a Two-Color Ti:Sapphire Laser," IEEE J. Quantum Electron. 2, 473-479 (1996).
[CrossRef]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "U1trabroadband Femtosecond Lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, "Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices," J. Korean Phys. Soc. 46, 1131-1136 (2005).

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, "Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser," Opt. Commun. 183, 485-491 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Quantum Electron. (1)

V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, "Nonlinear dynamics of ultrashort pulses in solid-state lasers mode locked by self-focusing," Quantum Electron. 28, 340-343 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of our Ti:Sapphire laser. Ti:S is a 2.5-mm-thick Ti:sapphire crystal and K is a 4-mm-thick 5% doped Yb:KYW. M1-M8 are broadband high-reflection coated chirped mirrors and OC is the output coupler. M1 and M2 are concave mirrors with a curvature radius of 100 mm; and M7 and M8, 150mm. The fused silica prisms P1 and P2 supply tunable dispersion.

Fig. 2.
Fig. 2.

(a) The output laser spectrum. (b)–(f) The variations versus the position of Yb:KYW relative to the focus of the confocal cavity, where Z is the position of Yb:KYW and Z0 is the position of the confocal focus. (b) The experimental pump threshold to start mode-locking. (c) The output power of the laser. (d) The experimental variations of the ranges of the region far away from Ti:S (black line and symbol) and region close to Ti:S (green line and symbol) for mode-locking. The symbolized red line is the gap of the two stable regions and the symbolized blue line is the total range of them. (e) The calculated beam waist inside Yb:KYW. (f) The calculated beam waist inside Ti:sapphire.

Fig. 3.
Fig. 3.

(a) and (b) are the experimental variations of the gap (red line and symbol) between the two stable regions and the total range of the stable regions for mode-locking (black line and symbol) versus the pump power for cavities without the Yb:KYW crystal and with Yb:KYW 8 mm in front of the confocal focus, respectively. The words “×10” in (a) mean that the data in the figure is 10 times less than the experimental data. (c), (d) and (e) are the variations of the calculated beam waists of the cavity versus the intracavity power. (c) The beam waist in the Ti:sapphire crystal while there is no Yb:KYW in the cavity. (d) The beam waist in the Ti:sapphire crystal when Yb:KYW is 8 mm in front of the focus of the confocal cavity. (e) The beam waist in the Yb:KYW crystal with the same conditions as (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s = f 1 2 ( n l 2 d 2 f 2 ) f 2 2 ( n l 1 d 1 f 1 )
T = ( cos ( γ l ) sin ( γ l ) ( n I γ ) n I γ sin ( γ l ) cos ( γ l ) )

Metrics