Abstract

Robust fundamental mode propagation and amplification of picosecond pulses at 1.56µm wavelength is demonstrated in a core-pumped Er fiber with 1170µm2 effective area. Record peak power exceeding 120 kW, and 67 nJ pulse energy are achieved before the onset of pulse breakup. A small increase in input pulse energy results in a temporal collapse of the pulse center to 58 fs duration, with peak powers approaching 200 kW.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. T¨unnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-Nonlinearity Single -Transverse-Mode Ytterbium-Doped Photonic Crystal Fiber Amplifier," Opt. Express 12, 1313-1319 (2004).
    [CrossRef] [PubMed]
  2. L. Dong, J. Li, and X. Peng, "Bend-Resistant Fundamental Mode Operation in Ytterbium-Doped Leakage Channel Fibers with Effective Areas Upto 3160 ?m2," Opt. Express 14, 11512-11519 (2006).
    [CrossRef] [PubMed]
  3. L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, Proceedings of Conference on Lasers and Electro-Optics, San Jose (2008) (Postdeadline) (Optical Society of America, Washington DC, 2008).
  4. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light Propagation with Ultralarge Modal Areas in Optical Fibers," Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  5. J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, "Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area Erbium Fiber," Opt. Lett. 32, 2429-2431 (2007).
    [CrossRef] [PubMed]
  6. J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. V’arallyay, "Simultaneous Direct Amplification and Compression of Picosecond Pulses to 65-KW Peak Power Without Pulse Break-Up in Erbium Fiber," Opt. Express 15, 17494-17501 (2007).
    [CrossRef] [PubMed]
  7. S. Wielandy, "Implications of Higher-Order Mode Content in Large Mode Area Fibers with Good Beam Quality," Opt. Express 15, 15402-15409 (2007).
    [CrossRef] [PubMed]
  8. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, "Spatially and Spectrally Resolved Imaging of Modal Content in Large-Mode-Area Fibers," Opt. Express 16, 7233-7243 (2008).
    [CrossRef] [PubMed]
  9. D. Gloge, "Optical Power Flow in Multimode Fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  10. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers - Technology and Applications (Marcel Dekker, New York, 2003).
  11. G. P. Agrawal, in Nonlinear Fiber Optics (Academic Press, 1995), Chaps. (5) Optical Solitons, (11) Fiber Amplifiers.
  12. J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, "Optically Driven Deposition of Single-Walled Carbon- Nanotube Saturable Absorbers on Optical Fiber End-Faces," Opt. Epxress 15, 9176-9183 (2007).
    [CrossRef]
  13. J. M. Fini, "Bend-Resistant Design of Conventional and Microstructure Fibers with Very Large Mode Area," Opt. Express 14, 69-81 (2006).
    [CrossRef] [PubMed]

2008

2007

2006

2004

1972

D. Gloge, "Optical Power Flow in Multimode Fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Agrawal, G. P.

G. P. Agrawal, in Nonlinear Fiber Optics (Academic Press, 1995), Chaps. (5) Optical Solitons, (11) Fiber Amplifiers.

Andrejco, M. J.

Broeng, J.

DiGiovanni, D.

DiGiovanni, D. J.

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, "Optically Driven Deposition of Single-Walled Carbon- Nanotube Saturable Absorbers on Optical Fiber End-Faces," Opt. Epxress 15, 9176-9183 (2007).
[CrossRef]

Dimarcello, F. V.

Dong, L.

Fini, J. M.

Ghalmi, S.

Gloge, D.

D. Gloge, "Optical Power Flow in Multimode Fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Headley, C.

Jakobsen, C.

Jasapara, J.

Jasapara, J. C.

Li, J.

Liem, A.

Limpert, J.

Monberg, E.

Nicholson, J. W.

Nolte, S.

Peng, X.

Petersson, A.

Ramachandran, S.

Reich, M.

Schreiber, T.

T¨unnermann, A.

Wielandy, S.

Windeler, R. S.

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, "Optically Driven Deposition of Single-Walled Carbon- Nanotube Saturable Absorbers on Optical Fiber End-Faces," Opt. Epxress 15, 9176-9183 (2007).
[CrossRef]

Wisk, P.

Yablon, A. D.

Yan, M. F.

Zellmer, H.

Bell Syst. Tech. J.

D. Gloge, "Optical Power Flow in Multimode Fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Opt. Epxress

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, "Optically Driven Deposition of Single-Walled Carbon- Nanotube Saturable Absorbers on Optical Fiber End-Faces," Opt. Epxress 15, 9176-9183 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, Proceedings of Conference on Lasers and Electro-Optics, San Jose (2008) (Postdeadline) (Optical Society of America, Washington DC, 2008).

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers - Technology and Applications (Marcel Dekker, New York, 2003).

G. P. Agrawal, in Nonlinear Fiber Optics (Academic Press, 1995), Chaps. (5) Optical Solitons, (11) Fiber Amplifiers.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fundamental mode field calculated from the measured index profile.

Fig. 2.
Fig. 2.

M2 measured at the output of LMA Er amplifier. Inset: Near-field image of mode.

Fig. 3.
Fig. 3.

Residual LP11 (a), and LP02 (b), mode intensity images retrieved from a S2 measurement at the output of the LMA Er amplifier.

Fig. 4.
Fig. 4.

Simulated gain per unit length for the first few modes of the Er fiber.

Fig. 5.
Fig. 5.

Schematic of the picosecond laser and amplifier system.

Fig. 6.
Fig. 6.

(a) Variation of average power and pulse energy versus pump power. (b) Intensity autocorrelation measured at low amplification (circles), and maximum amplification with E[1] in =102 pJ (dashes), and E[2] in =107 pJ (solid line). (c) Variation of autocorrelation FWHMwith output pulse energy, for E[1] in =102 pJ (squares), and E[2] in =107 pJ (circles). (d) Spectra recorded at low amplification (circles), and maximum amplification with E[1] in =102 pJ (dashes), and E[2] in =107 pJ (solid line).

Metrics