Abstract

We present the generation of a picosecond polarized supercontinuum in highly birefringent multimodal microstructured fiber. The initial steps of the spectral broadening are dominated by intermodal four-wave mixing controlled by the specific fiber design. Using a low repetition rate ultra-stable solid state laser, a pulse train well-suited for versatile time-domain fluorescence lifetime imaging applications is obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Herman, H. J. Lin, and J. R. Lakowicz, "Lifetime-Based Imaging," in Biomedical Photonics Handbook (CRC Press LLC, 2003)
    [CrossRef]
  2. R. W. Boyd, Nonlinear Optics (Academic Press, 2003)
  3. K. Suhling, J. Siegel, P. Lanigan, S. Lévêque-Fort, S. Webb, D. Phillips, D. Davis, and P. French, "Time-resolved fluorescence anisotropy imaging applied to live cells," Opt. Lett. 29, 584-586 (2004)
    [CrossRef] [PubMed]
  4. Z. Zhu and T. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fibre," Opt. Express 12, 791-796 (2004).
    [CrossRef] [PubMed]
  5. X. Xiong and W. J. Wadsworth, "Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation," Opt. Express 16, 2438-2445 (2008)
    [CrossRef] [PubMed]
  6. C. Lesvigne, V. Couderc, A. Tonello,P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, "Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber," Opt. Lett. 32, 2173-2175 (2007)
    [CrossRef] [PubMed]
  7. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. 24, 1395-1397 (1999)
    [CrossRef]
  8. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006)
    [CrossRef]
  9. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, " Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002)
    [CrossRef]
  10. T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
    [CrossRef]
  11. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002)
    [CrossRef]
  12. M. Seefeldt, A. Heuer, and R. Menzel, "Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth," Opt. Commun. 216, 199-202 (2003)
    [CrossRef]
  13. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005)
    [CrossRef] [PubMed]
  14. D. N. Papadopoulos, S. Forget, F. Druon, F. Balembois, and P. Georges, "Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate," Opt. Lett. 28, 1838-1840 (2003)
    [CrossRef] [PubMed]
  15. S. Lévêque-Fort, D. N. Papadopoulos, S. Forget, F. Balembois, P. Georges, and B. R. Masters, "Fluorescence lifetime imaging with a low-repetition-rate passively mode-locked diode-pumped Nd:YVO4 oscillator," Opt. Lett. 30, 168-170 (2005)
    [CrossRef] [PubMed]
  16. C. Gerhard, F Druon, P. Georges, V. Couderc, and P. Leproux, "Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror," Opt. Express 14, 7093-7098 (2006)
    [CrossRef] [PubMed]
  17. V. E. Zakharov and S. Wabnitz, "Optical Solitons: Theoretical challenges and industrial perspectives," EDP Sciences, Springer, Berlin (1999)

2008 (1)

2007 (1)

2006 (2)

2005 (2)

2004 (2)

2003 (3)

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

M. Seefeldt, A. Heuer, and R. Menzel, "Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth," Opt. Commun. 216, 199-202 (2003)
[CrossRef]

D. N. Papadopoulos, S. Forget, F. Druon, F. Balembois, and P. Georges, "Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate," Opt. Lett. 28, 1838-1840 (2003)
[CrossRef] [PubMed]

2002 (2)

1999 (1)

Balembois, F.

Barthélémy, A.

Bennett, P. J.

Blandin, P.

Broderick, N. G. R.

Chau, A. H. L.

Coen, S.

Couderc, V.

Davis, D.

Druon, F

Druon, F.

Dudley, J. M.

Eggleton, B. J.

Forget, S.

French, P.

Gapontsev, V. P.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006)
[CrossRef]

Georges, P.

Gerhard, C.

Grossard, N.

Hanna, M.

Hansen, K. P.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

Harvey, J. D.

Heuer, A.

M. Seefeldt, A. Heuer, and R. Menzel, "Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth," Opt. Commun. 216, 199-202 (2003)
[CrossRef]

Knight, J. C.

Lacroix, S.

Lanigan, P.

Leonhardt, R.

Leproux, P.

Lesvigne, C.

Lévêque-Fort, S.

Limpert, J.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

Maillotte, H.

Masters, B. R.

Menzel, R.

M. Seefeldt, A. Heuer, and R. Menzel, "Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth," Opt. Commun. 216, 199-202 (2003)
[CrossRef]

Monro, T. M.

Papadopoulos, D. N.

Phillips, D.

Popov, S. V.

Provino, L.

Richardson, D. J.

Rulkov, A. B.

Russell, P. S. J.

Schreiber, T.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

Seefeldt, M.

M. Seefeldt, A. Heuer, and R. Menzel, "Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth," Opt. Commun. 216, 199-202 (2003)
[CrossRef]

Siegel, J.

Suhling, K.

Taylor, J. R.

Tonello, A.

Tunnermann, A.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

Vyatkin, M. Y.

Wadsworth, W. J.

Webb, S.

Windeler, R. S.

Xiong, X.

Zellmer, H.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, " High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003)
[CrossRef]

M. Seefeldt, A. Heuer, and R. Menzel, "Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth," Opt. Commun. 216, 199-202 (2003)
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006)
[CrossRef]

Other (3)

V. E. Zakharov and S. Wabnitz, "Optical Solitons: Theoretical challenges and industrial perspectives," EDP Sciences, Springer, Berlin (1999)

P. Herman, H. J. Lin, and J. R. Lakowicz, "Lifetime-Based Imaging," in Biomedical Photonics Handbook (CRC Press LLC, 2003)
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic Press, 2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(left). Numerically calculated dispersion of LP01x, LP01y, LP11x, LP11y modes of the birefringent fiber and its profile (inset). (Right). Experimental setup. DPSSL means Diode-Pumped Solid State Laser.

Fig. 2.
Fig. 2.

Spectra generated in the MOF of 1.4 m versus polarization and for an output power of 120 mW.

Fig. 3.
Fig. 3.

Spectra generated in the MOF of 1.4 m versus coupled average power for polarization along the y axis (left) and the x axis (right).

Fig. 4.
Fig. 4.

Numerically calculated spectrograms at the output of 1.8 m of MOF. The peak power is of 550 W per mode and per polarization state. (Left): with pump pulses of 15 ps. (Right). With pump pulses of 40 ps

Metrics