Abstract

We report on a high power diode-pumped laser using multiple bulk Yb:KY(WO4)2 (KYW) crystals in a resonator optimised for this operation. From a dual-crystal resonator we obtain more than 24W of cwpower in a TEM00 mode limited by the available pump power. We also present results for semiconductor saturable absorber mirror (SESAM) mode-locking in the soliton as well as positive dispersion regime with average output powers of 14.6W and 17W respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, J. Limpert, and S. Nolte, "Ultrafast Fiber Amplifier Systems: Status, Perspectives and Applications," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), CTuK1
  2. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, "Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 µJ by use of an active multipass geometry," Opt. Lett. 33, 726-728 (2008)
    [CrossRef] [PubMed]
  3. J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron 12, 233-244 (2006)
    [CrossRef]
  4. T. Südmeyer, S. V. Marchese, C. R. Baer, S. Hashimoto, A. G. Engqvist, M. Golling, D. J. H. C. Maas, and U. Keller, "Femtosecond Thin Disk Lasers with >10 ?J Pulse Energy," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), CFP1
  5. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5µJ from a femtosecond thin disk laser," Opt. Lett. 31, 2728-2730 (2006).
    [CrossRef] [PubMed]
  6. P. Rußbüldt, T. Mans, D. Hoffmann, A.-L. Calendron, M. Lederer, and R. Poprawe, "Compact high Power fs-Oscillator-Amplifier System," in Conference on Ultrafast Phenomena XVI, Proceedings of the 16th International Conference (2008), MON4A.2
    [PubMed]
  7. G. R. Holtom, "Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars," Opt. Lett. 31, 2719-2721 (2006)
    [CrossRef] [PubMed]
  8. J. M. Eggleston, "Periodic Resonators for Average-Power Scaling of Stable-Resonator Solid-state Lasers," IEEE J. Quantum Electron 24, 1821-1824, (1988)
    [CrossRef]
  9. Y.-F. Chen, Y. P. Lan, and S. C. Wang, "Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser with a planar cavity," Opt. Lett. 25, 1016-1018 (2000).
    [CrossRef]
  10. C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Dguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, "0.5µJ Diode Pumped Femtosecond Laser Oscillator at 9MHz," in Advanced Solid-State Photonics, Vienna 2008, ME2
  11. B. Proctor, E. Westig, and F. Wise, "Characterization of a Kerr-Lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654-1656 (1993).
    [CrossRef] [PubMed]
  12. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
    [CrossRef] [PubMed]
  13. X. Zhou, H. Kapteyn, and M. Murnane, "Positive-dispersion cavity-dumped Ti:sapphire laser oscillator and its application to white light generation," Opt. Express 14, 9750-9757 (2006).
    [CrossRef] [PubMed]
  14. S. Dewald, T. Lang, C. D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from a laser oscillator," Opt. Lett. 31, 2072 (2006).
    [CrossRef] [PubMed]
  15. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
    [CrossRef]
  16. V. L. Kalashnikov and A. Chernykh, "Spectral anomalies and stability of chirped-pulse oscillators," Phys. Rev. A 75, 033820 (2007).
    [CrossRef]
  17. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. J. Lederer, and U. Morgner, "Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion," Opt. Express 15, 16017-16021 (2007)
    [CrossRef] [PubMed]
  18. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, "Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems," Appl. Opt. 42, 6934-6938 (2003).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (5)

2005 (1)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

2004 (1)

2003 (1)

2000 (1)

1993 (1)

1988 (1)

J. M. Eggleston, "Periodic Resonators for Average-Power Scaling of Stable-Resonator Solid-state Lasers," IEEE J. Quantum Electron 24, 1821-1824, (1988)
[CrossRef]

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

Chen, Y.-F.

Chernykh, A.

V. L. Kalashnikov and A. Chernykh, "Spectral anomalies and stability of chirped-pulse oscillators," Phys. Rev. A 75, 033820 (2007).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Clausnitzer, T.

Dekorsy, T.

Dewald, S.

Eggleston, J. M.

J. M. Eggleston, "Periodic Resonators for Average-Power Scaling of Stable-Resonator Solid-state Lasers," IEEE J. Quantum Electron 24, 1821-1824, (1988)
[CrossRef]

Emons, M.

Fernandez, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

Fuchs, H. J.

Fuji, T.

Fürbach, A.

Golling, M.

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Grange, R.

Holtom, G. R.

Jupé, M.

Kalashnikov, V. L.

V. L. Kalashnikov and A. Chernykh, "Spectral anomalies and stability of chirped-pulse oscillators," Phys. Rev. A 75, 033820 (2007).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Kapteyn, H.

Keller, U.

Killi, A.

Kleinbauer, J.

Kley, E. B.

Krausz, F.

Lan, Y. P.

Lang, T.

Lederer, M. J.

Limpert, J.

Marchese, S. V.

Morgner, U.

Moshammer, R.

Murnane, M.

Naumov, S.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Neuhaus, J.

Palmer, G.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Poppe, A.

Proctor, B.

Ristau, D.

Röser, F.

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron 12, 233-244 (2006)
[CrossRef]

Schreiber, T.

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron 12, 233-244 (2006)
[CrossRef]

Schröter, C. D.

Schultze, M.

Siegel, M.

Steinmann, A.

Südmeyer, T.

Sutter, D.

Tünnermann, A.

Ullrich, J.

Wang, S. C.

Weiler, S.

Westig, E.

Wise, F.

Zellmer, H.

Zhou, X.

Zöllner, K.

Appl. Opt. (1)

IEEE J. Quantum Electron (1)

J. M. Eggleston, "Periodic Resonators for Average-Power Scaling of Stable-Resonator Solid-state Lasers," IEEE J. Quantum Electron 24, 1821-1824, (1988)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron 12, 233-244 (2006)
[CrossRef]

New J. Phys. (1)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. A (1)

V. L. Kalashnikov and A. Chernykh, "Spectral anomalies and stability of chirped-pulse oscillators," Phys. Rev. A 75, 033820 (2007).
[CrossRef]

Other (4)

T. Südmeyer, S. V. Marchese, C. R. Baer, S. Hashimoto, A. G. Engqvist, M. Golling, D. J. H. C. Maas, and U. Keller, "Femtosecond Thin Disk Lasers with >10 ?J Pulse Energy," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), CFP1

P. Rußbüldt, T. Mans, D. Hoffmann, A.-L. Calendron, M. Lederer, and R. Poprawe, "Compact high Power fs-Oscillator-Amplifier System," in Conference on Ultrafast Phenomena XVI, Proceedings of the 16th International Conference (2008), MON4A.2
[PubMed]

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Dguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, "0.5µJ Diode Pumped Femtosecond Laser Oscillator at 9MHz," in Advanced Solid-State Photonics, Vienna 2008, ME2

A. Tünnermann, J. Limpert, and S. Nolte, "Ultrafast Fiber Amplifier Systems: Status, Perspectives and Applications," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), CTuK1

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Layout of the laser with LD 1 and 2 fiber coupled laser diodes (30W @ 981nm, 200µm core), L collimating and focussing lenses, M1 and M2 dichroic mirrors, XTAL 1 and 2 Yb:KYW crystals (l=2mm, ng-cut, 5% doped), M3 and M4 curved mirrors with R=200mm, M7 and M9 are curved mirrors with R=600mm and M8 is a flat turning mirror. M5 is the end mirror of the short cavity. GTI 1 and 2 are Gires-Tournois type dispersive mirrors with -500fs2 negative dispersion. OC 1 had a reflectivity of 90% when operating the symmetric short cavity laser head on its own (M5 in place). For the soliton mode-locked long cavity OC1 had a reflectivity of 85%. In the case of pos. dispersion mode-locking OC 1 was increased to 99% whilst an additional output coupler OC 2 with 95% reflectivity and +250fs2 dispersion was placed in the long cavity.

Fig. 2.
Fig. 2.

Output power of the short resonator in CW operation as a function of the total pump power emitted by both fibre coupled pump diodes. The slope efficiency is 51%.

Fig. 3.
Fig. 3.

Intensity autocorrelation of the soliton mode-locked laser close to the double-pulsing limit (Ppump=50W, Pout=14.6W). The deconvolved pulsewidth is 450fs, assuming a sech2(t) pulse. The inset shows the associated optical power spectrum with a FWHM of 2.6nm, corresponding to a time-bandwidth product of 0.322.

Fig. 4.
Fig. 4.

(a) Pulse spectrum of positive dispersion mode-locked oscillator. Total output power Pout=17W before compression (Ppump=50W). (b) Corresponding autocorrelation of the uncompressed pulse with insets showing the autocorrelation of the compressed pulse. Assuming a sech2(t) pulse, the compressed pulses have a width of 470fs.

Metrics