Abstract

We experimentally investigate Brillouin scattering properties in fluorine-doped single-mode optical fibers. The effective acoustic velocities determined from the measured dependences of acoustic resonance frequencies on optical wavelength are approximately equal to the individual acoustic velocities in the core and/or cladding regions. Brillouin gain coefficients are experimentally characterized and compared with that in a standard GeO2-doped single-mode fiber. The result indicates that the acousto-optic coupling efficiencies in all fibers are almost 100 %, which means that Brillouin threshold value can not be simply increased by fluorine doping. Moreover, it is found that the dependences of acoustic resonance frequencies on applied strain or temperature change are quantitatively enhanced by fluorine dopants, which is in opposite trend when compared with germanium ones.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 3rd version, 2001).
  2. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, and S. R. Bickham, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
    [Crossref] [PubMed]
  3. W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16, 10006–10017 (2008).
    [Crossref] [PubMed]
  4. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 738–740 (1996).
    [Crossref]
  5. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
    [Crossref]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
    [Crossref] [PubMed]
  7. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [Crossref] [PubMed]
  8. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [Crossref] [PubMed]
  9. T. Sugie, “Transmission limitation of CPFSK coherent lightwave systems due to stimulated Brillouin scattering in optical fiber,” J. Lightwave Technol. 9, 1145–1155 (1991).
    [Crossref]
  10. A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).
  11. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
    [Crossref]
  12. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19, 1389–1391 (2007).
    [Crossref]
  13. J. Yu, I. Kwon, and K. Oh, “Analysis of Brillouin frequency shift and longitudinal acoustic wave in a silica optical fiber with a triple-layered structure,” J. Lightwave Technol. 21, 1779–1786 (2003).
    [Crossref]
  14. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
    [Crossref]
  15. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO’2005, paper CThZ3, 2005.
  16. T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.
  17. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
    [Crossref] [PubMed]
  18. C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
    [Crossref]
  19. D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
    [Crossref]
  20. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on temperature and strain in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
    [Crossref] [PubMed]
  21. N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989).
    [Crossref]
  22. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [Crossref]
  23. A. L. Gaeta and R.W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, pp. 3205–3209, 2002.
    [Crossref]
  24. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
    [Crossref]
  25. T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
    [Crossref]
  26. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
    [Crossref]
  27. W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
    [Crossref]

2008 (2)

2007 (4)

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on temperature and strain in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
[Crossref] [PubMed]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[Crossref] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref] [PubMed]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19, 1389–1391 (2007).
[Crossref]

2006 (2)

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[Crossref]

2005 (3)

2004 (1)

2003 (1)

2002 (2)

A. L. Gaeta and R.W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, pp. 3205–3209, 2002.
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[Crossref]

2001 (1)

1997 (2)

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

1996 (2)

M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 738–740 (1996).
[Crossref]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[Crossref]

1993 (2)

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

1991 (1)

T. Sugie, “Transmission limitation of CPFSK coherent lightwave systems due to stimulated Brillouin scattering in optical fiber,” J. Lightwave Technol. 9, 1145–1155 (1991).
[Crossref]

1989 (1)

1983 (1)

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
[Crossref]

Abe, K.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 3rd version, 2001).

Andrekson, P. A.

Azuma, Y.

Bickham, S. R.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Bonnell, L.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Boyd, R.W.

A. L. Gaeta and R.W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, pp. 3205–3209, 2002.
[Crossref]

Chen, X.

Chowdhury, D. Q.

Chujo, W.

Crowley, A. M.

Demeritt, J. A.

DiDomenico, M.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
[Crossref]

Dragic, P. D.

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO’2005, paper CThZ3, 2005.

Dross, F.

Fujino, S.

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

A. L. Gaeta and R.W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, pp. 3205–3209, 2002.
[Crossref]

Galvanauskas, A.

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO’2005, paper CThZ3, 2005.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Gray, S.

Hansryd, J.

Hasegawa, T.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

He, Z.

Herraez, M. G.

Hirano, M.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16, 10006–10017 (2008).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
[Crossref]

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on temperature and strain in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
[Crossref] [PubMed]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19, 1389–1391 (2007).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[Crossref]

Jen, C. K.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

Kishi, M.

Knudsen, S. N.

Kobyakov, A.

Koyamada, Y.

Kumar, S.

Kushibiki, J.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

Kwon, I.

Li, M. J.

Liu, A.

Liu, C. H.

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO’2005, paper CThZ3, 2005.

Mito, T.

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

Morinaga, K.

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

Nakamura, S.

Nakanishi, T.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

Neron, C.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 738–740 (1996).
[Crossref]

Nozawa, T.

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

Oh, K.

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[Crossref]

Okamoto, K.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Okuno, T.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

Onishi, M.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

Ostermayer, F. W.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
[Crossref]

Papen, G. C.

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO’2005, paper CThZ3, 2005.

Pinnow, D. A.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
[Crossref]

Rich, T. C.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
[Crossref]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 738–740 (1996).
[Crossref]

Ruffin, A. B.

Sakaguchi, S.

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

Sakai, T.

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

Sato, S.

Sauer, M.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Shang, A.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Shibata, N.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[Crossref]

Song, K. Y.

Sotobayashi, H.

Sugie, T.

T. Sugie, “Transmission limitation of CPFSK coherent lightwave systems due to stimulated Brillouin scattering in optical fiber,” J. Lightwave Technol. 9, 1145–1155 (1991).
[Crossref]

Takeba, H.

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

Tanaka, D.

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

Tanaka, M.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[Crossref]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[Crossref]

Thevenaz, L.

K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[Crossref] [PubMed]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 738–740 (1996).
[Crossref]

Todoroki, S.

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

Wada, A.

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

Walton, D. T.

Wang, J.

Westlund, M.

Yablon, A. D.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19, 1389–1391 (2007).
[Crossref]

Yamauchi, R.

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

Yu, J.

Zenteno, L. A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Zou, W.

Appl. Phys. Lett. (1)

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and M. DiDomenico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, 527–529, 1983.
[Crossref]

IEEE Photon. Technol. Lett. (3)

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[Crossref]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19, 1389–1391 (2007).
[Crossref]

IEICE Trans. Commun. (1)

A. Wada, T. Nozawa, D. Tanaka, T. Sakai, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodical residual-strain in single-mode optical fibers,” IEICE Trans. Commun. E76-B, 345–351 (1993).

J. Am. Ceram. Soc. (1)

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[Crossref]

J. Lightwave Technol. (7)

J. Non-Cryst. Solid. (1)

T. Mito, S. Fujino, H. Takeba, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solid. 210, 155–162 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

A. L. Gaeta and R.W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, pp. 3205–3209, 2002.
[Crossref]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[Crossref] [PubMed]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 3rd version, 2001).

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO’2005, paper CThZ3, 2005.

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, and M. Onishi, “Al2O3-SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB”, in ECOC’2006, post-deadline paper Th. 4.2.2, 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of SBS-based measurement system. DFB-LD, distributed-feedback laser diode; SSBM, single-sideband modulator; EOM, electro-optic modulator; EDFAs, erbium-doped fiber amplifiers; PCs, polarization controllers; VOA, variable optical attenuator; PD, photo-detector; DAQ, data acquisition card; FUT, fiber under test; TL, tunable laser; Pol. Scrb., polarization scrambler; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Measured BGS of F-SMF-1 and F-SMF-2 without or with strain applied, respectively. (b) Acoustic resonance frequencies of peaks a, b and c, respectively, as functions of optical wavelength λ o . Symbolic points, measured results; solid line, linear fitting. (c) Acoustic resonance frequencies of peaks a, b and c measured at 1.549 µm as a function of the relative refractive index (Δ). Circles, measured results; solid line, linear fitting.

Fig. 3.
Fig. 3.

Measured Brillouin linewidth in F-SMFs and SMF varying with the increased Brillouin pump power.

Fig. 4.
Fig. 4.

(a) Measured Brillouin amplification to the Brillouin probe light under different Brillouin pump power for F-SMFs and SMF. The polarization state of the probe light is completely scrambled by a Pol. Scrb., and the amplified probe power is measured by an OSA. Symbolic symbols, experimental results; linear curves, least-squares linear fitting. (b) The fitted linear slope k as a function of L eff /A eff . Diamond points, experimental result; linear curve, least-squares linear fitting.

Fig. 5.
Fig. 5.

(a) Strain and (b) temperature dependences of the acoustic resonance frequencies in both F-SMFs. Symbolic points, experimental results; linear curves, least-squares linear fitting.

Tables (3)

Tables Icon

Table 1. Parameter list of fiber samples

Tables Icon

Table 2. Summary of measured and deduced parameters of peaks a, b and c

Tables Icon

Table 3. Strain and temperature coefficients of acoustic resonance frequencies in F-SMFs

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ν i = ( 2 n eff V a i ) · λ o 1 ,
g B 0 = 2 π p 12 2 c λ o 2 ρ 0 · n eff 7 V a BFS · 1 Δ ν BFS ,
G s = g B 0 P p L eff A eff ao K ,
Δ ν BFS = Δ ν B 0 ( ln 2 G s ) 1 2 ,
G e Δ P probe P probe = exp { G s } .
Δ ( n 1 n 0 ) n 0 × 100 % ,
G dB = 10 log 10 ( G e ) .
k = 10 log 10 ( e ) K · L eff A eff ao · g B 0 .

Metrics