Abstract

We report the first gigahertz clocked decoy-protocol quantum key distribution (QKD). Record key rates have been achieved thanks to the use of self-differencing InGaAs avalanche photodiodes designed specifically for high speed single photon detection. The system is characterized with a secure key rate of 1.02 Mbit/s for a fiber distance of 20 km and 10.1 kbit/s for 100 km. As the present advance relies upon compact non-cryogenic detectors, it opens the door towards practical and low cost QKD systems to secure broadband communication in future.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
    [Crossref]
  3. P. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–639 (1993).
    [Crossref]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  5. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).
  6. W. Stallings, Cryptography and network security, 3rd ed. (Prentice and Hall, New Jersey, 2003).
  7. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2002).
    [Crossref]
  8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [Crossref]
  9. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005).
    [Crossref] [PubMed]
  10. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
    [Crossref]
  11. European Integrated Project SECOQC, http://www.secoqc.net.
  12. M. Dušsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
    [Crossref]
  13. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref] [PubMed]
  14. H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref] [PubMed]
  15. X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
    [Crossref]
  16. X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref] [PubMed]
  17. X. B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light,” Phys. Rev. A 72, 012322 (2005).
    [Crossref]
  18. W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [Crossref] [PubMed]
  19. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
    [Crossref]
  20. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
    [Crossref] [PubMed]
  21. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).
  22. Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118 (2007).
    [Crossref]
  23. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
    [Crossref] [PubMed]
  24. C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
    [Crossref] [PubMed]
  25. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Express 15, 8465–8471 (2007).
    [Crossref] [PubMed]
  26. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
    [Crossref]
  27. Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
    [Crossref] [PubMed]
  28. A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
    [Crossref]
  29. Our time-tagging electronics record each photon with a 32-bit number to represent its arrival time. Due to restriction in the data bandwidth at around 160 Mbit/s per channel, for transferring photon information into computer memory, each channel can cope with only 5 million photons per second at most.
  30. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
    [Crossref]
  31. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16, 11354–11360 (2008).
    [Crossref] [PubMed]

2008 (3)

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16, 11354–11360 (2008).
[Crossref] [PubMed]

2007 (6)

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118 (2007).
[Crossref]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Express 15, 8465–8471 (2007).
[Crossref] [PubMed]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

2006 (1)

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

2005 (7)

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
[Crossref] [PubMed]

K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005).
[Crossref] [PubMed]

H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

X. B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light,” Phys. Rev. A 72, 012322 (2005).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

2004 (1)

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).

2003 (1)

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

2002 (3)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2002).
[Crossref]

2000 (1)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

1999 (1)

M. Dušsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

1993 (1)

P. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–639 (1993).
[Crossref]

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Baek, B.

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Bienfang, J. C.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Boisvert, R.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.

Brunner, N.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Buller, G. S.

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Chen, K.

H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Clark, C. W.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Cova, S. D.

Dixon, A. R.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Dušsek, M.

M. Dušsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Dynes, J. F.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Express 15, 8465–8471 (2007).
[Crossref] [PubMed]

Fernandez, V.

Fujiwara, M.

Gao, W.-B.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Gisin, N.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2002).
[Crossref]

Gordon, K. J.

Gottesman, D.

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).

Haderka, O.

M. Dušsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Harrington, J. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Hendrych, M.

M. Dušsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Hershman, B.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Hiskett, P. A.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Hughes, R. J.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Hwang, W. Y.

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

Inoue, K.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Kardynal, B. E.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

Lita, A. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Lo, H. K.

H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).

Lütkenhaus, N.

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Ma, H.-X.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Ma, L. J.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Ma, X.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Maeda, W.

Miki, S.

Mink, A.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Nakassis, T.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Nam, S. W.

A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16, 11354–11360 (2008).
[Crossref] [PubMed]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Nambu, Y.

Nordholt, J. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Pan, J. W.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Peng, C. Z.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Peterson, C. G.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Preskill, J.

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).

Qi, B.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Rarity, J. G.

P. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–639 (1993).
[Crossref]

Rech, I.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rice, P. R.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Rosenberg, D.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Sasaki, M.

Scarani, V.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Sharpe, A. W.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Express 15, 8465–8471 (2007).
[Crossref] [PubMed]

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118 (2007).
[Crossref]

Shields, A. J.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Express 15, 8465–8471 (2007).
[Crossref] [PubMed]

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118 (2007).
[Crossref]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
[Crossref] [PubMed]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2002).
[Crossref]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Stallings, W.

W. Stallings, Cryptography and network security, 3rd ed. (Prentice and Hall, New Jersey, 2003).

Stucki, D.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Su, D.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Tajima, A.

Takahashi, S.

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tanaka, A.

Tang, X.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Tapster, P. R.

P. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–639 (1993).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Tomita, A.

Townsend, P.

P. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–639 (1993).
[Crossref]

Townsend, P. D.

Waks, E.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Wang, X. B.

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

X. B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light,” Phys. Rev. A 72, 012322 (2005).
[Crossref]

Wang, X.-B.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Wang, Z.

Williams, C. J.

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Yang, D.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Yang, T.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Yin, H.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Yoshino, K.

Yuan, Z. L.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118 (2007).
[Crossref]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Express 15, 8465–8471 (2007).
[Crossref] [PubMed]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
[Crossref] [PubMed]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2002).
[Crossref]

Zbinden, H.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeng, H. P.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Zhang, J.

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Zhao, Y.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Appl. Phys. Lett. (6)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2002).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118 (2007).
[Crossref]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Electron. Lett. (1)

P. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–639 (1993).
[Crossref]

J. Cryptol. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Nat. Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Opt. Commun. (1)

M. Dušsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Opt. Express (4)

Phys. Rev. A (2)

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

X. B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light,” Phys. Rev. A 72, 012322 (2005).
[Crossref]

Phys. Rev. Lett. (7)

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref] [PubMed]

C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarisation encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High speed quantum key distribution system supports one-time pad encryption of real-time video,” Proc. SPIE 6244, 62440M (2006).
[Crossref]

Quant. Inf. Comput. (1)

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comput. 4, 325–360 (2004).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (5)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.

W. Stallings, Cryptography and network security, 3rd ed. (Prentice and Hall, New Jersey, 2003).

European Integrated Project SECOQC, http://www.secoqc.net.

Our time-tagging electronics record each photon with a 32-bit number to represent its arrival time. Due to restriction in the data bandwidth at around 160 Mbit/s per channel, for transferring photon information into computer memory, each channel can cope with only 5 million photons per second at most.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “A framework for practical quantum cryptography,” arXiv: 0802.4155v1 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of QKD system. [P] denotes a phase modulator, [B] a polarising beam splitter/combiner, [A] an attenuator, [M] an optical power meter, [C] a polarization controller and [D] InGaAs APD. All the modulating optics are driven by stand-alone gigahertz pattern generators with pre-loaded pseudo-random patterns.

Fig. 2.
Fig. 2.

Self-difference mode operation of an InGaAs APD. (a) Schematic for an APD in self-differencing mode. [S] is a 50:50 electrical signal splitter, [D] a subtractive combiner; Co-axial cables connecting the splitter and combiner are made with precise lengths so that the time delay between them corresponds to one APD gating clock period. The APD raw output signal is dominated by the periodic capacitive response, as shown in the inset. (b) A SD output recorded by an oscilloscope. The arrows indicate well discriminated avalanches. (c) Histogram of photon arrival times obtained using the output of the SD circuit. (d) A comparison of histograms of photon arrivals obtained with the same APD under conventional gated Geiger mode operation (blue line) or SD mode (black line). For both measurements, the photon detection efficiency was set to 10%. The red circles represent a Gaussian fit for histograms obtained with the SD circuit, giving a full width at half maximum of 50 ps.

Fig. 3.
Fig. 3.

Decoy QKD experimental results. Raw (filled squares), secure (open squares) key rate, and the QBER (solid circles). Theoretical simulations are also shown for raw (solid lines), secure (dashed lines) key rates and the QBER (dotted line). In simulations, Bob’s detection efficiency is set to 5% (corresponding 10% of detector efficiency), detector dark count rate of 6.8×10-6 per gate and afterpulse rate 4.7%, and a QBER of 0.3% due to optical misalignment. All simulation parameters used are consistent with experimental results.

Tables (1)

Tables Icon

Table 1. Summary of parameters and results for 20-km decoy QKD experiment. 10 standard deviations are also shown for Q µ , Q ν 1, Q ν 2 and ε µ .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q 1 Q 1 L = μ 2 e μ μ ν 1 μ ν 2 ν 1 2 + ν 2 2 [ Q ν 1 e ν 1 Q ν 2 e ν 2 ν 1 2 ν 2 2 μ 2 ( Q μ e μ Y 0 L ) ] .
ε 1 ε 1 U = ε μ Q μ e μ 1 2 Y 0 L Q 1 L e μ ,
Y 0 Y 0 L = ν 1 Q ν 2 e ν 2 ν 2 Q ν 1 e ν 1 ν 1 ν 2
R sec ure = 1 2 N μ { Q μ f EC H 2 ( ε μ ) + Q 1 L [ 1 H 2 ( ε 1 U ) ] } t

Metrics