Abstract

We report a novel light microscopy method for high resolution molecular imaging of thick biological tissues with one photon excited fluorescence. Effective optical sectioning and diffraction limited spatial resolution are achieved when imaging deep inside a multiple-scattering medium by the use of focal modulation, a technique for suppressing the background fluorescence signal excited by scattered light. Our method has been validated with animal tissue and an imaging depth around 600 microns has been demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007).
    [CrossRef] [PubMed]
  2. R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002).
    [CrossRef] [PubMed]
  3. M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
    [CrossRef]
  4. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  5. M. Minsky, Microscopy Apparatus. U. S. Patent No. 3,013,467 (1957).
  6. C. J. R. Sheppard and A. Choudhury, "Image formation in the scanning microscope," Optica Acta 24, 1051-1073 (1977).
    [CrossRef]
  7. M. Gu, T. Tannous, and C. J. R. Sheppard, "Effect of numerical aperture and annular pupil on confocal imaging through highly-scattering media," Opt. Lett. 21, 312-314 (1996).
    [CrossRef] [PubMed]
  8. C. J. R. Sheppard and R. Kompfner, "Resonant scanning optical microscope," Appl. Opt. 17, 2879-2882 (1978).
    [CrossRef] [PubMed]
  9. X. Deng and M. Gu, "Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation," Appl. Opt. 42, 3321-3329 (2003).
    [CrossRef] [PubMed]
  10. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  11. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
    [CrossRef]
  12. P. Theer, M. T. Hasan, and W. Denk, "Two-Photon imaging to a depth of 1000 ?m in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003).
    [CrossRef] [PubMed]
  13. A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008).
    [CrossRef]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  15. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
    [CrossRef] [PubMed]
  16. S. R. Chin, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef]
  17. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  18. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
    [CrossRef]
  19. W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).
  20. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  21. X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
    [CrossRef]
  22. H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
    [CrossRef] [PubMed]
  23. V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13195-208 (2003).
    [PubMed]
  24. Q. Zhu, N. Chen, and S. H. Kurtzman, "Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound," Opt. Lett. 28, 337-339 (2003).
    [CrossRef] [PubMed]
  25. D. Oron and Y. Silberberg, "Spatiotemporal coherent control using shaped, temporally focused pulses," Opt. Express 13, 9903-9908 (2005).
    [CrossRef] [PubMed]

2008

A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008).
[CrossRef]

2007

M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007).
[CrossRef] [PubMed]

2006

H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

2005

2004

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

2003

2002

R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002).
[CrossRef] [PubMed]

2001

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

2000

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

1997

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. R. Chin, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef]

1996

1995

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1978

1977

C. J. R. Sheppard and A. Choudhury, "Image formation in the scanning microscope," Optica Acta 24, 1051-1073 (1977).
[CrossRef]

Baumgartner, A.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

Beaurepaire, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

Boppart, S. A.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13195-208 (2003).
[PubMed]

Brezinski, M. E.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

Chen, N.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Chin, S. R.

Choma, M. A.

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, "Image formation in the scanning microscope," Optica Acta 24, 1051-1073 (1977).
[CrossRef]

Deng, X.

Denk, W.

Dombeck, D. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

Drexler, W.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

Fercher, A. F.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

Findl, O.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. R. Chin, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fukumura, D.

R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002).
[CrossRef] [PubMed]

Gregory, Y.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gu, M.

Hasan, M. T.

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

Hoffman, R. M.

M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007).
[CrossRef] [PubMed]

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

Jain, R. K.

R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002).
[CrossRef] [PubMed]

Jiang, P.

M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007).
[CrossRef] [PubMed]

Kasischeke, K. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

Klein, M.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Kompfner, R.

Krinsky, M. L.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Kurtzman, S. H.

Leray, A.

A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008).
[CrossRef]

Levene, M. J.

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

Li, X. D.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Lillis, K.

A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008).
[CrossRef]

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Mashimo, H.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Maslov, K.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Mertz, J.

A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008).
[CrossRef]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

Molley, R. P.

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

Munn, L. L.

R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002).
[CrossRef] [PubMed]

Mutinga, M.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13195-208 (2003).
[PubMed]

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

Oron, D.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Pitrix, C.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sarunic, M. V.

Sattmann, H.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

Schuman, J. S.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Silberberg, Y.

Southen, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chin, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tannous, T.

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Theer, P.

van Dam, J.

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Wang, L.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Webb, W. W.

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13195-208 (2003).
[PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Yang, C. H.

Yang, M.

M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Zhu, Q.

Appl. Opt.

Biophys. J

A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008).
[CrossRef]

Cancer Res

M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007).
[CrossRef] [PubMed]

CHIC

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995).
[CrossRef]

Endoscopy

X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Eur. Radiol.

V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13195-208 (2003).
[PubMed]

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).

J. Neurophysiol

M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004).
[CrossRef]

J. Neurosci. Meth.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001).
[CrossRef]

Nat. Biotechnol.

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Nat. Rev. Cancer

R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optica Acta

C. J. R. Sheppard and A. Choudhury, "Image formation in the scanning microscope," Optica Acta 24, 1051-1073 (1977).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other

M. Minsky, Microscopy Apparatus. U. S. Patent No. 3,013,467 (1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the prototype focal modulation microscopy system. The spatial phase distribution of the 640 nm excitation beam (red) is modulated by the use of two parallel mirrors, M1 (stationary) and M2 (oscillating axially at 5 kHz). The fluorescence emission (purple) from the focal volume is collected by a fiber based confocal detection system, and then the oscillatory component at 5 kHz is retrieved for image formation. The personal computer is used for data acquisition and analysis, lateral scanning with the fast steering mirror, and axial scanning with the 3D stage.

Fig. 2.
Fig. 2.

(a) Two-dimensional distribution of the differential excitation power in the focal plane. (b) Confocal signal (blue), FMM signal (green), and modulation depth (red) as functions of the normalized pinhole size.

Fig. 3.
Fig. 3.

Fluorescence images of chondrocytes obtained from chicken cartilage. Confocal images ((a) and (c)) were acquired simultaneously with the corresponding FMM images ((b) and (d)) at a depth of 280 microns. (e) and (f) are FMM images obtained from 500 and 600 microns in depth.

Metrics