Abstract

The operation of a femtosecond Cr4+:YAG laser that incorporates a novel GaInNAsSb semiconductor saturable Bragg reflector is reported. In the mode-locked regime 230fs pulses centred at 1528nm were generated at an average output power of 280mW. The SESAM exhibited a low saturation fluence of 10µJ/cm2 and a short recovery time of 12ps.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, "Recent developments in compat ultrafast lasers," Nature 424, 831-838 (2003).
    [CrossRef] [PubMed]
  2. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
    [CrossRef]
  3. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  4. H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, "Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers," Opt. Lett. 27, 2124-2126 (2002).
    [CrossRef]
  5. S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
    [CrossRef]
  6. L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
    [CrossRef]
  7. H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, and S. Marcinkevicius, "Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber," Opt. Lett. 30, 2793-2795 (2005).
    [CrossRef] [PubMed]
  8. O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, and M. Pessa, "1.5-µm monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser," Opt. Lett. 28, 364-366 (2003).
    [CrossRef] [PubMed]
  9. A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
    [CrossRef]
  10. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20 fs pulses by a prismless Cr4+:YAG laser," Opt. Lett. 27, 61-63 (2002).
    [CrossRef]
  11. E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-711 (2005).
    [CrossRef]
  12. M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
    [CrossRef]
  13. R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. 73, 653-662 (2001).
    [CrossRef]
  14. D. Findlay and R. A. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
    [CrossRef]
  15. D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
    [CrossRef]

2008

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

2007

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

2006

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

2005

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-711 (2005).
[CrossRef]

H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, and S. Marcinkevicius, "Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber," Opt. Lett. 30, 2793-2795 (2005).
[CrossRef] [PubMed]

2003

2002

2001

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. 73, 653-662 (2001).
[CrossRef]

1996

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

1966

D. Findlay and R. A. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Angelow, G.

Brown, C. T.A.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Burns, D.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, "Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers," Opt. Lett. 27, 2124-2126 (2002).
[CrossRef]

Calvez, S.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, "Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers," Opt. Lett. 27, 2124-2126 (2002).
[CrossRef]

Chen, Y. H.

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Chudoba, C.

Clay, R. A.

D. Findlay and R. A. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Dawson, M. D.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, "Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers," Opt. Lett. 27, 2124-2126 (2002).
[CrossRef]

Erchak, A. A.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Fujimoto, J. G.

Gopinath, J. T.

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20 fs pulses by a prismless Cr4+:YAG laser," Opt. Lett. 27, 61-63 (2002).
[CrossRef]

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Grange, R.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Gupta, J. A.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Haiml, M.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Harkonen, A.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Harmand, J.-C.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Hopkinson, M.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Ippen, E. P.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20 fs pulses by a prismless Cr4+:YAG laser," Opt. Lett. 27, 61-63 (2002).
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Jiao, Y. H.

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Jouhti, T.

Karirinne, S.

Kärtner, F. X.

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20 fs pulses by a prismless Cr4+:YAG laser," Opt. Lett. 27, 61-63 (2002).
[CrossRef]

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Keller, U.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

U. Keller, "Recent developments in compat ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. 73, 653-662 (2001).
[CrossRef]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Kolodziejski, L. A.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Konttinen, J.

Largeau, L.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Larsson, A.

Laurand, N.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Le Dû, M.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Leburn, C. G.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Lindberg, H.

Liverini, V.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Macaluso, R.

Marcinkevicius, S.

Mauguin, O.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Morgner, U.

Naumov, S.

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-711 (2005).
[CrossRef]

Okhotnikov, O. G.

Oudar, J.-L.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Paschotta, R.

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. 73, 653-662 (2001).
[CrossRef]

Pessa, M.

Petrich, G. S.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Poitras, D.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Ripin, D. J.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20 fs pulses by a prismless Cr4+:YAG laser," Opt. Lett. 27, 61-63 (2002).
[CrossRef]

Rutz, A.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Sadeghi, M.

Scheuer, V.

Schön, S.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Shen, H. M.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Shi, L. W.

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Sibbett, W.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Sorokin, E.

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-711 (2005).
[CrossRef]

Sorokina, I. T.

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-711 (2005).
[CrossRef]

Strassner, M.

Sun, H. D.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, "Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers," Opt. Lett. 27, 2124-2126 (2002).
[CrossRef]

Travers, L.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Tschudi, T.

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Valentine, G. J.

Wang, S.

Wang, Z. C.

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Wang, Z. G.

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Weda, J.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Westlund, M.

Xu, B.

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Appl. Phys.

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. 73, 653-662 (2001).
[CrossRef]

Appl. Phys. Lett.

M. Le Dû, J.-C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J.-L. Oudar, "Quantum-well saturable absorber at 1.55µm on GaAs substrate with a fast recombination rate," Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Electron. Lett.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-711 (2005).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

J. Phys. D

L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, "Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media," J. Phys. D 40, R307-R318 (2007).
[CrossRef]

Mat. Sci.

S. Calvez, N. Laurand, H. D. Sun, J. Weda, D. Burns, M. D. Dawson, A. Harkonen, T. Jouhti, M. Pessa, M. Hopkinson, D. Poitras, J. A. Gupta, C. G. Leburn, C. T.A. Brown, and W. Sibbett, "GaInNAs(Sb) surface normal devices," Phys. Status Solidi A - Appl.Mat. Sci. 205, 85-92 (2008).
[CrossRef]

Nature

U. Keller, "Recent developments in compat ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

Opt. Commun.

D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser," Opt. Commun. 214, 285-289 (2002).
[CrossRef]

Opt. Lett.

Phys. Lett.

D. Findlay and R. A. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Other

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Layout of the SESAM device. The upper part shows the zoomed design around the absorber with the electric field distribution (red). (b). Reflectivity (red) and photoluminescence (blue) of the GaInNAsSb SESAM.

Fig. 2.
Fig. 2.

(a). Cr4+:YAG laser cavity layout: Pump light from a Yb:fibre laser is coupled via telescope optics and a focusing lens (FL) into the cavity. M1 (HR, RC=-75mm) and M2 (HR, RC=-100mm) produce a cavity mode radius of 40µm in the Brewster cut Cr4+:YAG crystal. An output coupler (OC) and an HR mirror/SESAM terminated the cavity. (b). Measured tuning range of the Cr4+:YAG laser with a HR mirror (blue – solid dots) and the SESAM (red – circles). The crosses indicate the free running wavelength, without wavelength selection by the intracavity prism-slit combination. The reflectivity characteristic of the SESAM is overlaid for comparison.

Fig. 3.
Fig. 3.

Threshold and slope efficiency characteristics for the HR mirror (inset) and the SESAM for three different output couplers (black – triangles=0.1% OC, red – crosses=0.35% OC and blue – dots=1.4% OC). The switching points between cw and mode locking are indicated with arrows.

Fig. 4.
Fig. 4.

Absorbed Pump Power at lasing threshold versus the logarithm of the reflectivity of the output coupler for the HR mirror (blue) and the SESAM (red). The difference in offset of the fitted lines (marked as Δδ) indicates the losses of the SESAM to be of the order of 0.3% (low signal absorption).

Fig. 5.
Fig. 5.

(a). Measured optical spectrum. (b). Corresponding intensity autocorrelation of the output from the mode-locked Cr4+:YAG laser.

Metrics