Abstract

We report on a laser source at 589 nm based on sum-frequency generation of two infrared laser at 1064 nm and 1319 nm. Output power as high as 800 mW is achieved starting from 370 mW at 1319 nm and 770 mW at 1064 nm, corresponding to converting roughly 90% of the 1319 nm photons entering the cavity. The power and frequency stability of this source are ideally suited for cooling and trapping of sodium atoms.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Fugate, "Measurement of atmospheric wavefront distortion using scattering light form a laser guide-star," Nature (London) 353, 144-146 (1991).
    [CrossRef]
  2. T. H. Jeys, A. A. Brailove, and A. Mooradian, "Sum frequency generation of sodium resonance radiation," Appl. Opt. 28, 2588-2591 (1989).
    [CrossRef] [PubMed]
  3. H. Moosmuller and J. D. Vance, "Sum-frequency generation of continuous-wave sodium d2 resonance radiation," Opt. Lett. 22, 1135-1137 (1997).
    [CrossRef] [PubMed]
  4. J. D. Vance, C. Y. She, and H. Moosmuller, "Continuous-wave, all-solid-state, single-frequency 400-mw source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator," Appl. Opt. 37, 4891-4896 (1998).
    [CrossRef]
  5. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20w of continuouswave sodium d2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).
    [CrossRef] [PubMed]
  6. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
    [CrossRef]
  7. R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, "Efficient, all-solid-state, raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004).
    [CrossRef] [PubMed]
  8. Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
    [CrossRef]
  9. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. Mortensen, P. Buchhave, and F. Laurell, "Efficient all solid-state continuous-wave yellow-orange light source," Opt. Express 13, 1188-1192 (2005).
    [CrossRef] [PubMed]
  10. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Wattslevel frequency doubling of a narrow line linearly polarized raman fiber laser to 589nm," Opt. Express 13, 6772-6776 (2006).
    [CrossRef]
  11. J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, "Multi-watt 589nm fiber laser source," in "SPIE Photonics West Conference," (2006).
  12. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
    [CrossRef] [PubMed]
  13. E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
    [CrossRef]
  14. R. W. Boyd, Nonlinear optics (Academic Press, 2003).
  15. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  16. J.-J. Zondy, D. Touahri, and O. Acef, "Absolute value of the d 36 nonlinear coefficient of aggas2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider," J. Opt. Soc. Am. B 14, 2481-2497 (1997).
    [CrossRef]
  17. A. E. Siegman, Lasers (University Science Books, 1986).
  18. Y. Kaneda and S. Kubota, "Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator," Appl. Opt. 36, 7766-7775 (1997).
    [CrossRef]
  19. E. Mimoun, L. De Sarlo, J. J. Zondy, J. Dalibard and F. Gerbier, in preparation (2008).

2006

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Wattslevel frequency doubling of a narrow line linearly polarized raman fiber laser to 589nm," Opt. Express 13, 6772-6776 (2006).
[CrossRef]

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

2005

2004

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, "Efficient, all-solid-state, raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004).
[CrossRef] [PubMed]

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
[CrossRef]

2003

1998

1997

1995

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

1991

R. Q. Fugate, "Measurement of atmospheric wavefront distortion using scattering light form a laser guide-star," Nature (London) 353, 144-146 (1991).
[CrossRef]

1989

1968

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Acef, O.

Andrews, M. R.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Bienfang, J. C.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Boyd, M.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Brailove, A. A.

Buchhave, P.

Campbell, G.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Chikkatur, A.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Convery, M.

Davis, K. B.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Denman, C. A.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20w of continuouswave sodium d2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).
[CrossRef] [PubMed]

Dronov, A. G.

Drummond, J. D.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

Durfee, D. S.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Feng, Y.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
[CrossRef]

Fugate, R. Q.

R. Q. Fugate, "Measurement of atmospheric wavefront distortion using scattering light form a laser guide-star," Nature (London) 353, 144-146 (1991).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Grime, B. W.

Gustavson, T.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Hillman, P. D.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20w of continuouswave sodium d2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).
[CrossRef] [PubMed]

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
[CrossRef]

Janousek, J.

Jeys, T. H.

Johansson, S.

Kaneda, Y.

Ketterle, W.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Kubota, S.

Kurn, D. M.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Laurell, F.

Mckay, T.

Mewes, M. O.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Mildren, R.

Mooradian, A.

Moore, G. T.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20w of continuouswave sodium d2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).
[CrossRef] [PubMed]

Moosmuller, H.

Mortensen, J.

Pask, H.

Piper, J.

Popov, S. V.

Pritchard, D.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Rulkov, A. B.

Schneble, D.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

She, C. Y.

Shirakawa, A.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
[CrossRef]

Streed, E.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Taylor, J. R.

Telle, J. M.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20w of continuouswave sodium d2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).
[CrossRef] [PubMed]

Tidemand-Lichtenberg, P.

Torii, Y.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Touahri, D.

Tuffli, A. L.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

Ueda, K.-I.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
[CrossRef]

van Druten, N. J.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Vance, J. D.

Vyatkin, M. Y.

Wang, S.

Zondy, J.-J.

Appl. Opt.

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "589 nm light source based on raman fiber laser," Jpn. J. Appl. Phys. 43, L722-L724 (2004).
[CrossRef]

Nature (London)

R. Q. Fugate, "Measurement of atmospheric wavefront distortion using scattering light form a laser guide-star," Nature (London) 353, 144-146 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, "20 w cw 589 nm sodium beacon excitation source for adaptative optical telescope applications," Opt. Mater. 26, 507-513 (2004).
[CrossRef]

Phys. Rev. Lett.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-einstein condensation in a gas of sodium atoms," Phys. Rev. Lett. 75, 3969-3974 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, "Large atom number bose-einstein condensate machines," Rev. Sci. Instrum. 77, 023106 (2006).
[CrossRef]

Other

R. W. Boyd, Nonlinear optics (Academic Press, 2003).

A. E. Siegman, Lasers (University Science Books, 1986).

E. Mimoun, L. De Sarlo, J. J. Zondy, J. Dalibard and F. Gerbier, in preparation (2008).

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, "Multi-watt 589nm fiber laser source," in "SPIE Photonics West Conference," (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup for SFG in a doubly resonant bow-tie cavity formed by four mirrors M 1,..,4. For the pump lasers i (i=1, 2), we note P (cav) i the intra-cavity power, Pi the incident power, P (ref) i the reflected power, Ci the power fraction transmitted through the crystal, ad Ri the reflectivity of the input coupler. P 3 is the output power produced at λ 3.

Fig. 2.
Fig. 2.

Lossless model : 2(a): Intracavity powers for laser 1 and 2 (λ 1=1064 nm and λ 2=1319 nm) required to reach total conversion, plotted against the reflectivity R 2 of the input coupler; 2(b): Reflectivity R 1 of the input coupler plotted againt R 2 : Each couple (R 1,R 2) on this curve ensures total conversion.

Fig. 3.
Fig. 3.

3(b)–3(d): Intra-cavity powers for lasers 1 [3(b)] and 2 [2(d)] (λ 1=1064 nm, λ 2=1319 nm), plotted against the cavity resonance frequency tuned with a piezoelectric transducer; 3(c)–3(e): Powers reflected out of the cavity for lasers 1 [3(c)] and 2 [3(e)]. The dashed lines show the predictions from the model described in the text, including both conversion and passive losses.

Fig. 4.
Fig. 4.

Contour map of the efficiency η of the conversion process as a function of the reflectivities R 1 and R 2 of the input coupler M 1 for laser 1 and 2 (λ 1=1064 nm and λ 2=1319 nm). 4(a): Lossless case. The dashed line [same as in Fig. 2(b)] corresponds to total conversion (η=1). 4(b): Passive losses are taken into account using (δ 1=2.4%,δ 2=1.6%). While η=1 cannot be obtained anymore experimentally, efficiencies higher than 90% can still be reached.

Fig. 5.
Fig. 5.

5(a): Output power at 589 mn plotted against intra-cavity power at 1064 nm (varied by changing the incoming power into the cavity). The solid line is the result of the numerical calculations as described in text. 5(b): Conversion coefficient α [see Eq. (1)], varying the incoming power of one pump laser while leaving the other fixed. The conversion coefficient is constant and equal to that measured in the single pass configuration (dashed line), irrespective of laser power.

Fig. 6.
Fig. 6.

Saturated absorption signal (solid line) while scanning the frequency of the 1319 nm laser, thus the one of the 589 nm one. The D2 transitions corresponding to atoms in the ground F=2 [6(a)] and F=1 [6(b)] electronic states are represented. (i-j) represents the level crossing line between transitions i and j.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 3 = α P 1 ( cav ) P 2 ( cav ) .
P i ( cav ) P i = 1 R i L i ( 1 R i ( 1 δ i ) C i ) 2 .
η = P 3 P 3 ( max )
P 2 ( ref ) P 2 = ( C 2 R 2 ) 2 ( 1 R 2 C 2 ) 2 .

Metrics