Abstract

Described herein are initial experimental details and properties of a silicon core, silica glass-clad optical fiber fabricated using conventional optical fiber draw methods. Such semiconductor core fibers have potential to greatly influence the fields of nonlinear fiber optics, infrared and THz power delivery. More specifically, x-ray diffraction and Raman spectroscopy showed the core to be highly crystalline silicon. The measured propagation losses were 4.3 dB/m at 2.936 µm, which likely are caused by either microcracks in the core arising from the large thermal expansion mismatch with the cladding or to SiO2 precipitates formed from oxygen dissolved in the silicon melt. Suggestions for enhancing the performance of these semiconductor core fibers are provided. Here we show that lengths of an optical fiber containing a highly crystalline semiconducting core can be produced using scalable fiber fabrication techniques.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
    [CrossRef]
  2. V. Raghunathan, D. Borlaug, R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman amplifier," Opt. Express 15, 14355 - 14362 (2007).
    [CrossRef] [PubMed]
  3. B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008).
    [CrossRef]
  4. T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
    [CrossRef]
  5. S. Baek and W. Roh, "Single mode Raman laser based on multimode fiber," Opt. Lett. 29, 153 - 155 (2004).
    [CrossRef] [PubMed]
  6. J. Ballato and E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848 - 6854 (1995).
    [CrossRef] [PubMed]
  7. G. M. Sheldrick, "SHELXTL version 6.1, Program for Crystal Structure Refinement," University of Gottingen: Germany, 2000.
  8. Data from www.ee.byu.edu/photonics/opticalconstants.phtml
  9. B. N. Dutta, "Lattice constants and thermal expansion of silicon up to 900 C," Phys. Status Solidi 2, 984 - 987 (1962).
    [CrossRef]
  10. W. L. Bond and W. Kaiser, "Interstitial versus substitutional oxygen in silicon," J. Phys. Chem Solids 16, 44 - 45 (1960).
    [CrossRef]
  11. S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004).
    [CrossRef]
  12. I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).
  13. K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999).
    [CrossRef]
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276 - 278 (1973).
    [CrossRef]
  15. W. Kaiser, "Electrical and optical properties of heat-treated silicon," Phys. Rev. 105, 1751 - 1756 (1957).
    [CrossRef]
  16. A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979).
    [CrossRef]
  17. O. Saracoglu and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor," Opt. Eng. 41, 598 - 600 (2002).
    [CrossRef]

2008

B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008).
[CrossRef]

2007

2006

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
[CrossRef]

2004

S. Baek and W. Roh, "Single mode Raman laser based on multimode fiber," Opt. Lett. 29, 153 - 155 (2004).
[CrossRef] [PubMed]

S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004).
[CrossRef]

2002

O. Saracoglu and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor," Opt. Eng. 41, 598 - 600 (2002).
[CrossRef]

T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
[CrossRef]

2000

I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).

1999

K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999).
[CrossRef]

1995

1979

A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979).
[CrossRef]

1973

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276 - 278 (1973).
[CrossRef]

1962

B. N. Dutta, "Lattice constants and thermal expansion of silicon up to 900 C," Phys. Status Solidi 2, 984 - 987 (1962).
[CrossRef]

1960

W. L. Bond and W. Kaiser, "Interstitial versus substitutional oxygen in silicon," J. Phys. Chem Solids 16, 44 - 45 (1960).
[CrossRef]

1957

W. Kaiser, "Electrical and optical properties of heat-treated silicon," Phys. Rev. 105, 1751 - 1756 (1957).
[CrossRef]

Badding, J.

B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008).
[CrossRef]

Baek, S.

Ballato, J.

Bond, W. L.

W. L. Bond and W. Kaiser, "Interstitial versus substitutional oxygen in silicon," J. Phys. Chem Solids 16, 44 - 45 (1960).
[CrossRef]

Borlaug, D.

Boyraz, O.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
[CrossRef]

Crookston, M.

T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
[CrossRef]

Dimitropoulos, D.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
[CrossRef]

Dutta, B. N.

B. N. Dutta, "Lattice constants and thermal expansion of silicon up to 900 C," Phys. Status Solidi 2, 984 - 987 (1962).
[CrossRef]

Gröbner, J.

S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004).
[CrossRef]

Hinkley, E. D.

A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979).
[CrossRef]

Ippen, E. P.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276 - 278 (1973).
[CrossRef]

Jackson, B.

B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008).
[CrossRef]

Jalali, B.

V. Raghunathan, D. Borlaug, R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman amplifier," Opt. Express 15, 14355 - 14362 (2007).
[CrossRef] [PubMed]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
[CrossRef]

Kaiser, W.

W. L. Bond and W. Kaiser, "Interstitial versus substitutional oxygen in silicon," J. Phys. Chem Solids 16, 44 - 45 (1960).
[CrossRef]

W. Kaiser, "Electrical and optical properties of heat-treated silicon," Phys. Rev. 105, 1751 - 1756 (1957).
[CrossRef]

Kakimoto, K.

K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999).
[CrossRef]

Kensuke, I.

I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).

Kikuchi, S.

K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999).
[CrossRef]

Majumdar, A. K.

A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979).
[CrossRef]

Masahito, W.

I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).

Menzies, R. T.

A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979).
[CrossRef]

Minoru, E.

I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).

Ozoe, H.

K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999).
[CrossRef]

Ozsoy, S.

O. Saracoglu and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor," Opt. Eng. 41, 598 - 600 (2002).
[CrossRef]

Raghunathan, V.

V. Raghunathan, D. Borlaug, R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman amplifier," Opt. Express 15, 14355 - 14362 (2007).
[CrossRef] [PubMed]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
[CrossRef]

Rice, R.

Roh, W.

S. Baek and W. Roh, "Single mode Raman laser based on multimode fiber," Opt. Lett. 29, 153 - 155 (2004).
[CrossRef] [PubMed]

T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
[CrossRef]

Russell, T.

T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
[CrossRef]

Saracoglu, O.

O. Saracoglu and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor," Opt. Eng. 41, 598 - 600 (2002).
[CrossRef]

Sazio, P.

B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008).
[CrossRef]

Schmid-Fetzer, R.

S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004).
[CrossRef]

Schnurre, S. M.

S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004).
[CrossRef]

Snitzer, E.

Stolen, R. H.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276 - 278 (1973).
[CrossRef]

Taketoshi, H.

I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).

Willis, S.

T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
[CrossRef]

Adv. Mater.

B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276 - 278 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006).
[CrossRef]

J. Cryst. Growth

K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999).
[CrossRef]

J. Non-Cryst. Solids

S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002).
[CrossRef]

J. Phys. Chem Solids

W. L. Bond and W. Kaiser, "Interstitial versus substitutional oxygen in silicon," J. Phys. Chem Solids 16, 44 - 45 (1960).
[CrossRef]

Opt. Eng.

O. Saracoglu and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor," Opt. Eng. 41, 598 - 600 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

W. Kaiser, "Electrical and optical properties of heat-treated silicon," Phys. Rev. 105, 1751 - 1756 (1957).
[CrossRef]

Phys. Status Solidi

B. N. Dutta, "Lattice constants and thermal expansion of silicon up to 900 C," Phys. Status Solidi 2, 984 - 987 (1962).
[CrossRef]

Prop.

I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).

Other

G. M. Sheldrick, "SHELXTL version 6.1, Program for Crystal Structure Refinement," University of Gottingen: Germany, 2000.

Data from www.ee.byu.edu/photonics/opticalconstants.phtml

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the core region of the silicon core, silica-clad optical fiber.

Fig. 2.
Fig. 2.

X ray diffraction spectrum for the Si core optical fiber (black lines) relative to that for a bulk single crystal (blue line). The crystallographic indices are specified and match perfectly those of crystalline silicon.

Fig. 3.
Fig. 3.

Raman spectrum of the silicon in the core of the optical fiber (solid blue dots) and, for comparison, that of microelectronics grade single crystal (open black dots).

Fig. 4.
Fig. 4.

Elemental profile of silicon (black squares) and oxygen (blue circles) across the core/clad interface of the silicon core optical fiber. Distance arbitrarily defined relative to where compositions go from silicon-rich (approximately core) to silicon-poor (approximately clad).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N P = 24 π 3 α ( N 0 M 2 ρ A ) 2 ( n 2 n 0 2 n 2 + 2 n 0 2 ) 2 n 0 4 λ 4
V = N 0 N P ( M 2 ρ A )

Metrics