Abstract

We show that ultrahigh-Q wavelength-sized cavities can be reconfigurably formed by local refractive index tuning of photonic-crystal mode-gap waveguides. We have found that Q can be extraordinarily high (~5×109), which is much higher than that of structure-modulated mode-gap cavities. Furthermore, the required index modulation is extremely small (Δn/n~10-3), which enables dynamic cavity formation by fast optical nonlinearity. We numerically show that traveling photons in a waveguide can be pinned by fast local index tuning.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  2. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  3. B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  4. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  5. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
    [CrossRef] [PubMed]
  6. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
    [CrossRef]
  7. Y. Takahashi, H. Hagino, Y. Tanaka, B-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206 (2007).
    [CrossRef] [PubMed]
  8. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
    [CrossRef]
  9. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090.
    [CrossRef] [PubMed]
  10. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11095.
    [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
    [CrossRef] [PubMed]
  12. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  13. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004).
    [CrossRef] [PubMed]
  14. H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
    [CrossRef]
  15. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506.
    [CrossRef] [PubMed]
  16. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
    [CrossRef] [PubMed]
  17. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005).
    [CrossRef] [PubMed]
  18. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
    [CrossRef] [PubMed]
  19. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  20. K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
    [CrossRef]
  21. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551.
    [CrossRef] [PubMed]
  22. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
    [CrossRef] [PubMed]
  23. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, "Dynamic release of short pulse from ultrahigh-Q nanocavities via adiabatic wavelength conversion", CLEO/QELS 2008, QPDB1, San Diego, USA.
  24. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
    [CrossRef] [PubMed]
  25. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," J. Lightwave Technol. 26, 1532-1539 (2008).
    [CrossRef]
  26. M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  27. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (R) (2006).
    [CrossRef]
  28. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
    [CrossRef] [PubMed]
  29. Q. F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Physics 3, 406-410 (2007).
    [CrossRef]
  30. K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
    [CrossRef]
  31. S. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
    [CrossRef] [PubMed]

2008 (4)

2007 (9)

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
[CrossRef] [PubMed]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090.
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206 (2007).
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

2006 (3)

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
[CrossRef] [PubMed]

2005 (4)

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004 (4)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551.
[CrossRef] [PubMed]

M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

2003 (3)

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Akahane, Y.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Asano, T.

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Baba, T.

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Charvolin, T.

de Sterke, C. M.

Dong, P.

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Fan, S. H.

M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Forchel, A.

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hadji, E.

Hagino, H.

Hein, T.

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Herrmann, R.

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Inoshita, K.

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

Kamp, M.

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Kira, G.

Kita, S.

Kondo, S.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Kuramochi, E.

M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11095.
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551.
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

Kwon, S.

Lalanne, P.

Lipson, M.

Loffler, A.

Mitsugi, M.

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Mitsugi, S.

Morita, H.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Morita, M.

Moss, D. J.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Noda, S.

Notomi, M.

M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11095.
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551.
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Nozaki, K.

Peyrade, D.

Picard, E.

Rodier, J. C.

Ryu, H-Y.

Segawa, T.

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551.
[CrossRef] [PubMed]

K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B-S.

Y. Takahashi, H. Hagino, Y. Tanaka, B-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206 (2007).
[CrossRef] [PubMed]

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Steel, M. J.

Sunner, T.

Sünner, T.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, Y.

Tanabe, T.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

Tanaka, Y.

Taniyama, H.

M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11095.
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Tomljenovic-Hanic, S.

Vahala, K.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Velha, P.

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Xu, Q. F.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

Electron. Lett. (1)

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Mater. (1)

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nature (3)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Nature Materials (1)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

Nature Photon. (1)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

Opt. Commun. (1)

K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Opt. Express (10)

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551.
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678.
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11095.
[CrossRef] [PubMed]

Q. F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Physics 3, 406-410 (2007).
[CrossRef]

S. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506.
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007).
[CrossRef] [PubMed]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090.
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206 (2007).
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458.
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (4)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Other (2)

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (R) (2006).
[CrossRef]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, "Dynamic release of short pulse from ultrahigh-Q nanocavities via adiabatic wavelength conversion", CLEO/QELS 2008, QPDB1, San Diego, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Width-modulated line-defect mode-gap cavity in a 2D triangular-lattice air-hole photonic crystal slab. The red, green, and blue holes are shifted away from the line defect center by 9, 6, and 3 nm, respectively. (b) Index-modulated line-defect mode-gap cavity in the same photonic crystal slab. The refractive index of the red shadowed region is modulated as expressed by Eq. (1). (c) Theoretical band dispersion of the base W1 mode-gap waveguide (a row of missing holes in the Γ-K direction in a 2D triangular-lattice air-hole photonic crystal slab).

Fig. 2.
Fig. 2.

Optical field distribution (Hz, magnetic field perpendicular to the 2D plane) of index-modulated mode-gap cavities calculated by 3D FDTD method. Size parameters for calculations are described in the text. A red circle represents r=r 0 which describes the index modulation as in Eq. (1). r 0 is assumed to be 3a in all calculations except for Δn/n=0.06% where r 0=5a. The Q values are obtained with the 1244 grid condition for (a, b, c), and with the 1960 grid condition for (d, e).

Fig. 3.
Fig. 3.

Summarized performance of index-modulated cavities. Q and V eff as a function of Δn/n. Q 1 is obtained with the 1224 grids in the horizontal direction, and Q 2 is obtained with the 1960 grids. r 0 is 3a except the data point at Δn/n=0.06% and 0.04% where r 0=5a.

Fig. 4.
Fig. 4.

Snap shots of optical field distribution with index tuning. An optical pulse with the wavelength of 1641 nm is injected from the right end of a line defect waveguide. At t=1.025 ps, the refractive index of the red shadowed region is tuned by 0.8%. The temporal profile of the index tuning is shown in Fig. 5(a). The structural parameters are the same as in Fig. 2 except we employ the effective refractive index of n=2.8.

Fig. 5.
Fig. 5.

(a) Temporal profile of the index variation with Δn/n=0.8% at τ=0.1 ps and t0 =11.025 ps. (b–e) Magnetic field at the center of the tuned point (shown in Fig. 5(a)) as a function of time. (b) No tuning case. (c) Tuned by Δn/n=0.8% at τ=0.1 ps at t=11.025 ps. (d) Tuned by Δn/n=1% at τ=0.05 ps at t=11.025 ps. (e) Tuned by Δn/n=1% at τ=0.5 ps at t=11.025 ps.

Fig. 6.
Fig. 6.

Frequency spectrum of the field intensity at the tuned point. The wavelength of the input pulse is 1641 nm. (a) Spectrum for the whole process in Fig. 4 (the time period is approximately 62 ps). (b) Spectrum after tuning (last half of the time period in (a), approximately 31 ps).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 0 + Δ n e ( r r 0 ) 2 .

Metrics