Abstract

The use of gold nanorods for photoacoustic molecular imaging with simultaneous multiple targeting is reported. Multiple targeting is done by utilizing the tunable optical absorption property of gold nanorods. This technique allows multiple molecular signatures to be obtained by simply switching laser wavelength. HER2 and EGFR were chosen as the primary target molecules for examining two cancer cells, OECM1 and Cal27. Both in vitro and in vivo mouse model imaging experiments were performed, with contrast enhancement of up to 10dB and 3.5dB, respectively. The potential in improving cancer diagnosis is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
    [CrossRef] [PubMed]
  2. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
    [CrossRef] [PubMed]
  3. D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
    [CrossRef] [PubMed]
  4. L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
    [CrossRef] [PubMed]
  5. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
    [CrossRef] [PubMed]
  6. P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
    [CrossRef] [PubMed]
  7. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
    [CrossRef]
  8. J. A. Viator, L. O., Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, "Photoacoustic measurement of epidermal melanin," Proc. SPIE 4960, 14-20 (2003).
    [CrossRef]
  9. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002).
    [CrossRef] [PubMed]
  10. C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
    [CrossRef] [PubMed]
  11. D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
    [CrossRef] [PubMed]
  12. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
    [CrossRef] [PubMed]
  13. S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics for surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
    [CrossRef]
  14. F. Meric-Bernstam and M. C. Hung, "Advances in Targeting Human Epidermal Growth Factor Receptor-2 Signaling for Cancer Therapy," Clin. Cancer Res. 12, 6326-6330 (2006).
    [CrossRef] [PubMed]
  15. S. Kalyankrishna and J. R. Grandis, "Epidermal Growth Factor Receptor Biology in Head and Neck Cancer," J. Clin. Oncol. 24, 2666-2672 (2006).
    [CrossRef] [PubMed]
  16. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
    [CrossRef]
  17. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
    [CrossRef]
  18. C. W. Shih, W. C. Lai, C. C. Hwang, S. S. Chang, and C. R. C. Wang, Metal Nanoparticles: Synthesis, Characterization, and Application (Marcel Dekker, 2001), Chap. 7.
  19. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
    [CrossRef] [PubMed]
  20. H. Liao, J. H. Hafner, "Gold nanorod bioconjugates," Chem. Mater. 17, 4636-4641 (2005).
    [CrossRef]
  21. "Optical Absorption Spectra," http://omlc.ogi.edu/spectra/index.html.
  22. G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

2008 (1)

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

2007 (2)

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

2006 (2)

F. Meric-Bernstam and M. C. Hung, "Advances in Targeting Human Epidermal Growth Factor Receptor-2 Signaling for Cancer Therapy," Clin. Cancer Res. 12, 6326-6330 (2006).
[CrossRef] [PubMed]

S. Kalyankrishna and J. R. Grandis, "Epidermal Growth Factor Receptor Biology in Head and Neck Cancer," J. Clin. Oncol. 24, 2666-2672 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Liao, J. H. Hafner, "Gold nanorod bioconjugates," Chem. Mater. 17, 4636-4641 (2005).
[CrossRef]

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

2004 (4)

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
[CrossRef] [PubMed]

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

2003 (3)

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

J. A. Viator, L. O., Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, "Photoacoustic measurement of epidermal melanin," Proc. SPIE 4960, 14-20 (2003).
[CrossRef]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

2002 (2)

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002).
[CrossRef] [PubMed]

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

1999 (3)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics for surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

1997 (1)

Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
[CrossRef]

Agarwal, A.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

Breakefield, X. O.

K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
[CrossRef] [PubMed]

Carpenter, J. E.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Carson, P. L.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

Chamberland, D. L.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

Chang, S. S.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
[CrossRef]

Chen, C. D.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

Chen, C.-D.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Cherry, S. R.

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

Chris Wang, C.-R.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Chung, L. W. K.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

Cui, Y.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Deyo, D. J.

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

Ellegala, D. B.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics for surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Esenaliev, R. O.

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

Fowlkes, J. B.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

Ganesh, T.

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

Gao, X.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Grandis, J. R.

S. Kalyankrishna and J. R. Grandis, "Epidermal Growth Factor Receptor Biology in Head and Neck Cancer," J. Clin. Oncol. 24, 2666-2672 (2006).
[CrossRef] [PubMed]

Hafner, J. H.

H. Liao, J. H. Hafner, "Gold nanorod bioconjugates," Chem. Mater. 17, 4636-4641 (2005).
[CrossRef]

Halas, N. J.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Hirsch, L. R.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Huang, S. W.

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

Hung, M. C.

F. Meric-Bernstam and M. C. Hung, "Advances in Targeting Human Epidermal Growth Factor Receptor-2 Signaling for Cancer Therapy," Clin. Cancer Res. 12, 6326-6330 (2006).
[CrossRef] [PubMed]

Jackson, J. B.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Jacobs, A.

K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
[CrossRef] [PubMed]

Josephson, L.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

Kalyankrishna, S.

S. Kalyankrishna and J. R. Grandis, "Epidermal Growth Factor Receptor Biology in Head and Neck Cancer," J. Clin. Oncol. 24, 2666-2672 (2006).
[CrossRef] [PubMed]

Karabutov, A. A.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

Kaul, S.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Kingston, D. G. I.

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

Kircher, M. F.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

Klibanov, A. L.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Kotov, N.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

Lai, W. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

Larin, K. V.

Larina, I. V.

Lee, A.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Lee, C. L.

Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
[CrossRef]

Leong-Poi, H.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Levenson, R. M.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Li, P.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

Liao, C.-K.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Liao, H.

H. Liao, J. H. Hafner, "Gold nanorod bioconjugates," Chem. Mater. 17, 4636-4641 (2005).
[CrossRef]

Lindner, J. R.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics for surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Mahmood, U.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

Meric-Bernstam, F.

F. Meric-Bernstam and M. C. Hung, "Advances in Targeting Human Epidermal Growth Factor Receptor-2 Signaling for Cancer Therapy," Clin. Cancer Res. 12, 6326-6330 (2006).
[CrossRef] [PubMed]

Motamedi, M.

Myer, L.

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

Nie, S.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Oraevsky, A. A.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

Paciotti, G. F.

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

Pao, K.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

Prough, D. S.

Shaffrey, M. E.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Shah, K.

K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
[CrossRef] [PubMed]

Shieh, D.-B.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Shih, C. W.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

Sklenar, J.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Tamarkin, L.

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

Tang, Y.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

Viator, J. A.

J. A. Viator, L. O., Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, "Photoacoustic measurement of epidermal melanin," Proc. SPIE 4960, 14-20 (2003).
[CrossRef]

Wang, C. R. C.

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
[CrossRef]

Wang, X.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

Wei, C. W.

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

Wei, C.-W.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Weissleder, R.

K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
[CrossRef] [PubMed]

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

West, J. L.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Wu, Y.-N.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

Yu, Y. Y.

Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
[CrossRef]

Anal. Chem. (1)

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bioconjug. Chem. (1)

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, "Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes," Bioconjug. Chem. 13, 554-560 (2002).
[CrossRef] [PubMed]

Chem. Mater. (1)

H. Liao, J. H. Hafner, "Gold nanorod bioconjugates," Chem. Mater. 17, 4636-4641 (2005).
[CrossRef]

Circulation (1)

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to ?v?3," Circulation 108, 336-341 (2003).
[CrossRef] [PubMed]

Clin. Cancer Res. (1)

F. Meric-Bernstam and M. C. Hung, "Advances in Targeting Human Epidermal Growth Factor Receptor-2 Signaling for Cancer Therapy," Clin. Cancer Res. 12, 6326-6330 (2006).
[CrossRef] [PubMed]

Gene Ther. (1)

K. Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Ther. 11, 1175-1187 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Chris Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef] [PubMed]

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

J. Clin. Oncol. (1)

S. Kalyankrishna and J. R. Grandis, "Epidermal Growth Factor Receptor Biology in Head and Neck Cancer," J. Clin. Oncol. 24, 2666-2672 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
[CrossRef]

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics for surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Langmuir (1)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

Mol. Imaging Biol. (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi M, and A. A. Oraevsky, "Bioconjugated gold NPs as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-9 (2004).
[CrossRef] [PubMed]

Nanotechnology (1)

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study, " Nanotechnology 19, 095101 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

NSTI-Nanotech. (1)

G. F. Paciotti, L. Myer, D. G. I. Kingston, T. Ganesh, and L. Tamarkin, "Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies," NSTI-Nanotech. 1, 7-10 (2005).

Phys. Med. Biol. (1)

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. A. Viator, L. O., Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, "Photoacoustic measurement of epidermal melanin," Proc. SPIE 4960, 14-20 (2003).
[CrossRef]

Other (2)

C. W. Shih, W. C. Lai, C. C. Hwang, S. S. Chang, and C. R. C. Wang, Metal Nanoparticles: Synthesis, Characterization, and Application (Marcel Dekker, 2001), Chap. 7.

"Optical Absorption Spectra," http://omlc.ogi.edu/spectra/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Absorption spectra of gold nanorods with two aspect ratios: (A) AuNR785 and (B) AuNR1000.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup for in vivo PA imaging.

Fig. 3.
Fig. 3.

Western blot analysis revealed the overexpression of HER2 in OECM1 cells and EGFR overexpression in Cal27.

Fig. 4.
Fig. 4.

Diagram of sample placement. Cells with specific targeting probes (experimental group) were in the left, cells in the control groups were in the middle, and cells with nonspecific targeting probes were in the right.

Fig. 5.
Fig. 5.

(a) Images of OECM1 cells obtained at 800 and 1064 nm. OECM1 cells were with AuNR785-HER2, AuNR1000-EGFR, and AuNR785 (from left to right) (b) Images of Cal27 cells obtained at 800 and 1064 nm. Cal27 cells were with AuNR1000-EGFR, AuNR785-HER2, and AuNR1000 (from left to right). The images are displayed with a dynamic range of 10 dB.

Fig. 6.
Fig. 6.

Images of Cal27 tumor before and after the injection of AuNR1000 and AuNR1000-EGFR. Ellipses indicate the tumor regions. (a) Fusion images before/after AuNR1000-EGFR injection at different time points. The ultrasound images are displayed on a grayscale, and the superimposed PA images obtained at an optical wavelength of 1064 nm are displayed in red pseudocolor. (b) PA images before/after AuNR1000-EGFR injection shown in the same scale. (c) Fusion images before/after AuNR1000 injection at different time points. The ultrasound images are displayed on a grayscale, and the superimposed PA images obtained at an optical wavelength of 1064 nm are displayed in red pseudocolor.. (d) PA images before/after AuNR1000 injection shown in the same scale.

Fig. 7.
Fig. 7.

Images of OECM1 tumor before and after the injection of AuNR785 and AuNR785-HER2. Ellipses indicate the tumor regions. (a) Fusion images before/after AuNR785-HER2 injection at different time points. The ultrasound images are displayed on a grayscale, and the superimposed PA images obtained at an optical wavelength of 800 nm are displayed in red pseudocolor. (b) PA images before/after AuNR785-HER2 injection shown in the same scale. (c) Fusion images before/after AuNR785 injection at different time points. The ultrasound images are displayed on a grayscale, and the superimposed PA images obtained at an optical wavelength of 800 nm are displayed in red pseudocolor. (d) PA images before/after AuNR785 injection shown in the same scale.

Fig. 8.
Fig. 8.

Histology with a scale bar of 500 µm. Epidermis, dermis, subcutis, fascia, and muscular layers were on the top of the tumor.

Fig. 9.
Fig. 9.

(a) Averaged image intensities within the tumor region versus time after injections with AuNR1000-EGFR (solid line) and AuNR1000 (dashed line). (b) Averaged image intensities within the tumor region versus time after injection with AuNR785-HER2 (solid line) and AuNR785 (dashed line). The averages were calculated from three cross-sectional images. Error bars indicate standard deviations.

Fig. 10.
Fig. 10.

(a) PA images before/after AuNR785-HER2 injection shown in the same scale. (b) Averaged image intensities within the tumor region versus observation time.

Fig. 11.
Fig. 11.

Biodistribution of AuNRs of organs taken from test mice at different time period after intravenous injection of the AuNR785 and AuNR785-HER2. n=3.

Metrics