Abstract

High sensitivity is obtained at larger resonant incident angle if negative diffraction order of metallic grating is used to excite the surface plasmon. A highly sensitive grating-based surface plasmon resonance (SPR) sensor is designed for the hydrogen detection. A thin palladium (Pd) film deposited on the grating surface is used as transducer. The influences of grating period and the thickness of Pd on the performance of sensor are investigated using rigorous coupled-wave analysis (RCWA) method. The sensitivity as well as the width of the SPR curves and reflective amplitude is considered simultaneously for designing the grating-based SPR hydrogen sensor, and a set of optimized structural parameters is presented. The performance of grating-based SPR sensor is also compared with that of conventional prism-based SPR sensor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Butler, "Optical fiber hydrogen sensor," Appl. Phys. Lett. 45,1007-1009 (1984).
    [CrossRef]
  2. P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
    [CrossRef]
  3. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
    [CrossRef]
  4. D. Monzón-Hernández, D. Luna-Moreno, J. Villatoro, and G. Badenes, "All-optical fiber hydrogen sensor based annealed Pd-Au sensing nanolayers," Proc. SPIE 6619, 66191F1-4 (2007).
  5. C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982).
    [CrossRef]
  6. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999).
    [CrossRef]
  7. K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004).
    [CrossRef]
  8. Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, "Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases," Opt. Lett. 30,2218-2220 (2005).
    [CrossRef] [PubMed]
  9. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
    [CrossRef] [PubMed]
  10. H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, "Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light," Appl. Opt. 46,800-806 (2007).
    [CrossRef] [PubMed]
  11. D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987).
    [CrossRef] [PubMed]
  12. M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994).
    [CrossRef]
  13. C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
    [CrossRef] [PubMed]
  14. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
    [CrossRef]
  15. K. H. Yoon and M. L. Shuler, "Design optimization of nano-grating surface plasmon resonance sensors," Opt. Express 14,4842-4849(2006).
    [CrossRef] [PubMed]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22,1099-1119 (1983).
    [CrossRef] [PubMed]
  17. P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9,5056-5070 (1974).
    [CrossRef]
  18. D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
    [CrossRef] [PubMed]
  19. B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
    [CrossRef]

2007 (2)

H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, "Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light," Appl. Opt. 46,800-806 (2007).
[CrossRef] [PubMed]

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

2006 (2)

K. H. Yoon and M. L. Shuler, "Design optimization of nano-grating surface plasmon resonance sensors," Opt. Express 14,4842-4849(2006).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, "Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases," Opt. Lett. 30,2218-2220 (2005).
[CrossRef] [PubMed]

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004).
[CrossRef]

2002 (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

2001 (1)

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999).
[CrossRef]

1996 (1)

C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
[CrossRef] [PubMed]

1994 (2)

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994).
[CrossRef]

B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
[CrossRef]

1987 (1)

D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987).
[CrossRef] [PubMed]

1984 (1)

M. A. Butler, "Optical fiber hydrogen sensor," Appl. Phys. Lett. 45,1007-1009 (1984).
[CrossRef]

1983 (1)

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9,5056-5070 (1974).
[CrossRef]

Alexander, R. W.

Banerji, S.

Bell, R. J.

Bell, S. E.

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

Booksh, K. S.

Brown, R. G.

D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987).
[CrossRef] [PubMed]

Brungs, M.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
[CrossRef]

Butler, M. A.

M. A. Butler, "Optical fiber hydrogen sensor," Appl. Phys. Lett. 45,1007-1009 (1984).
[CrossRef]

Chadwick, B.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
[CrossRef]

Chen, C.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9,5056-5070 (1974).
[CrossRef]

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

Cullen, D. C.

D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987).
[CrossRef] [PubMed]

Furlong, D. N.

C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
[CrossRef] [PubMed]

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
[CrossRef]

Gal, M.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999).
[CrossRef]

Geddes, N. J.

C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
[CrossRef] [PubMed]

Gobi, K. V.

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Handa, Y.

K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999).
[CrossRef]

Hugon, O.

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
[CrossRef]

Jiao, X.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9,5056-5070 (1974).
[CrossRef]

Jory, M. J.

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994).
[CrossRef]

Kajikawa, K.

K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004).
[CrossRef]

Kim, Y. C.

Lawrence, C. R.

C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
[CrossRef] [PubMed]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982).
[CrossRef]

Lin, H. Y.

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982).
[CrossRef]

Long, L. L.

Lowe, C. R.

D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987).
[CrossRef] [PubMed]

Matsumoto, K.

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Ming, H.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

Mitsui, K.

K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004).
[CrossRef]

Miura, N.

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982).
[CrossRef]

Ordal, M. A.

Peng, W.

Rao, R.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Sakai, T.

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
[CrossRef] [PubMed]

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994).
[CrossRef]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

Shankaran, D. R.

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

Sheu, B. C.

Shuler, M. L.

Tann, J.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
[CrossRef]

Tobiska, P.

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
[CrossRef]

Toko, K.

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Trouillet, A.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
[CrossRef]

Tsai, W. H.

Tsao, Y. C.

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

Veillas, C.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

Vukusic, P. S.

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994).
[CrossRef]

Wang, P.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Ward, C. A.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999).
[CrossRef]

Yoon, K. H.

Yuan, G.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Zhang, D.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Zhang, J.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007).
[CrossRef]

Appl. Phys. Lett. (2)

M. A. Butler, "Optical fiber hydrogen sensor," Appl. Phys. Lett. 45,1007-1009 (1984).
[CrossRef]

K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004).
[CrossRef]

Biosens. Bioelectron. (2)

C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996).
[CrossRef] [PubMed]

D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005).
[CrossRef] [PubMed]

Biosensors (1)

D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002).
[CrossRef]

Nano Lett. (1)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9,5056-5070 (1974).
[CrossRef]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982).
[CrossRef]

Sens. Actuators B (4)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999).
[CrossRef]

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001).
[CrossRef]

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994).
[CrossRef]

B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994).
[CrossRef]

Other (1)

D. Monzón-Hernández, D. Luna-Moreno, J. Villatoro, and G. Badenes, "All-optical fiber hydrogen sensor based annealed Pd-Au sensing nanolayers," Proc. SPIE 6619, 66191F1-4 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of SPR sensor based on metallic diffraction grating.

Fig. 2.
Fig. 2.

(A). Sensitivity of the resonant angle of grating-based SPR sensors versus the resonant angle of incidence (λ=850nm, na=1.02). The line is theoretical curve calculated using Eq. (3). The circles are the simulated results calculated using the rigorous coupled-wave analysis method (RCWA). The six circles from left to right correspond to six grating configuration: 1) Λ=700nm, 2) Λ=600nm, 3) Λ=500nm, 4) Λ=450nm, 5) Λ=430nm, 6) Λ=420nm. And f=0.9, d=40nm, m=-1 in all six configuration. (B) Angular SPR curves of the grating-based SPR sensor with different parameters. The curves are calculated using RCWA, and from left to right correspond to the above six grating parameters (na=1.02).

Fig. 3.
Fig. 3.

(A). Angular SPR curves of the prism-based SPR sensor with three different refractive index of analyte: na=1.01, 1.02, 1.03. The prism is made of BK7 glass, and the thickness of gold film deposited on the prism is 50nm. (B) Angular SPR curves of the -1 diffraction order grating-based SPR sensor with three different refractive index of analyte: na=1.01, 1.02, 1.03. The structure parameters of gold grating are Λ=430nm, f=0.9, d=40nm. (C) Angular SPR curves of the +1 diffraction order grating-based SPR sensor with three different refractive index of analyte: na=1.01, 1.02, 1.03. The structure parameters of gold grating are Λ=1800nm, f=0.7, d=70nm.

Fig. 4.
Fig. 4.

(A). Angular SPR curves for different t values when sensor is exposed to air with a hydrogen concentration of 0. (B). The variation of Δθres and FWHM of SPR curves with thickness t. (C). FOM depend on thickness t. The values of Λ, f, d are fixed at 430nm, 0.9, 40nm respectively and t varies from 2nm to 14nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k SPW = k 0 ε m n d 2 ε m + n d 2
± k 0 ε m n a 2 ε m + n a 2 = k 0 n a sin θ res + m 2 π Λ
S G = d θ res d n a = 1 n a cos θ res [ ± ( ε m ε m + n a 2 ) 3 2 sin θ res ]
Λ > m λ n a ( m > 0 ) , m λ 2 n a < Λ < m λ n a ( m < 0 )
ε Pd , c % H 2 = h ( c % ) × ε Pd , 0 % H 2
FOM = Δ θ res FWHM × Δ R

Metrics