Abstract

We establish the principal limits for the nanoconcentration of the THz radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of R0~λ0 to the final size of R=100-250 nm can be achieved, while the THz radiation intensity is increased by a factor of ×10 to ×250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for the THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This will find a wide spectrum of applications in science, engineering, biomedical research, environmental monitoring, and defense.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, New York, 2006).
  2. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
    [CrossRef]
  3. E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007).
    [CrossRef] [PubMed]
  4. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
    [CrossRef] [PubMed]
  5. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008).
    [CrossRef] [PubMed]
  6. L. Novotny and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).
    [CrossRef] [PubMed]
  7. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
    [CrossRef]
  8. J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
    [CrossRef] [PubMed]
  9. F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
    [CrossRef] [PubMed]
  10. W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
    [CrossRef]
  11. H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
    [CrossRef]
  12. N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
    [CrossRef]
  13. F. Keilmann, "Scanning tip for optical radiation," in U. S. Patent 4,994,818, pp. 1-7 (Max Plank Geselschaft, Germany, USA, 1991).
  14. R. Lecaque, S. Gresillon, and C. Boccara, "THz emission microscopy with sub-wavelength broadband source," Opt. Express 16, 4731-4738 (2008).
    [CrossRef] [PubMed]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R.W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  16. A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
    [CrossRef]
  17. J. Zenneck, "Fortplfanzung ebener elektromagnetischer Wellen laengs einer ebenen Leiterflaeche," Ann. Phys. 23, 846-866 (1907).
    [CrossRef]
  18. J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
    [CrossRef]
  19. D. L. Mills and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B 39, 1569-1574 (1989).
    [CrossRef]
  20. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  21. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005).
    [CrossRef]
  22. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
    [CrossRef]
  23. F. Keilmann, "FIR microscopy," Infrared Physics and Technology 36, 217-224 (1995).
    [CrossRef]
  24. A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
    [CrossRef]
  25. F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
    [CrossRef]
  26. J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
    [CrossRef]
  27. Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
    [CrossRef]
  28. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
    [CrossRef] [PubMed]
  29. B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
    [CrossRef]
  30. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
    [CrossRef]
  31. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004).
    [CrossRef]
  32. K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008).
    [CrossRef]
  33. F. Keilmann, "Status of THz-to-visible nanospectroscopy development," J. Biol. Phys. 29, 195-199 (2003).
    [CrossRef]
  34. R. Merlin, "Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing," Science 317, 927-929 (2007).
    [CrossRef] [PubMed]

2008 (5)

E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008).
[CrossRef] [PubMed]

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

R. Lecaque, S. Gresillon, and C. Boccara, "THz emission microscopy with sub-wavelength broadband source," Opt. Express 16, 4731-4738 (2008).
[CrossRef] [PubMed]

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
[CrossRef]

K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008).
[CrossRef]

2007 (7)

R. Merlin, "Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing," Science 317, 927-929 (2007).
[CrossRef] [PubMed]

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Novotny and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
[CrossRef]

2005 (2)

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005).
[CrossRef]

2004 (4)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
[CrossRef]

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004).
[CrossRef]

2003 (3)

F. Keilmann, "Status of THz-to-visible nanospectroscopy development," J. Biol. Phys. 29, 195-199 (2003).
[CrossRef]

H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

2002 (1)

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

2000 (1)

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

1996 (2)

A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
[CrossRef]

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

1995 (1)

F. Keilmann, "FIR microscopy," Infrared Physics and Technology 36, 217-224 (1995).
[CrossRef]

1989 (1)

D. L. Mills and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B 39, 1569-1574 (1989).
[CrossRef]

1983 (1)

1907 (1)

J. Zenneck, "Fortplfanzung ebener elektromagnetischer Wellen laengs einer ebenen Leiterflaeche," Ann. Phys. 23, 846-866 (1907).
[CrossRef]

1899 (1)

A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Alexander, J. R.W.

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Andreani, L. C.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
[CrossRef]

Angelis, F. D.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Antonov, V.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

Arena, D. A.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Astafiev, O.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

Babayan, A. E.

K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Boccara, C.

Bolivar, P. H.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

Businaro, L.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Carr, G. L.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Chen, H. T.

H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Das, G.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Dragoman, D.

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004).
[CrossRef]

Dragoman, M.

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004).
[CrossRef]

Eickelkamp, T.

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Fabrizio, E. D.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Ferguson, B.

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Galli, M.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Gómez Rivas, J.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

Gresillon, S.

Guckenberger, R.

A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
[CrossRef]

Hakhoumian, A. A.

K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008).
[CrossRef]

Hebling, J.

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
[CrossRef]

Hirai, H.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

Hoffmann, M. C.

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
[CrossRef]

Jacobsen, V.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Janke, C.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

Kadlec, F.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

Kao, C. C.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Keilmann, F.

F. Keilmann, "Status of THz-to-visible nanospectroscopy development," J. Biol. Phys. 29, 195-199 (2003).
[CrossRef]

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
[CrossRef]

F. Keilmann, "FIR microscopy," Infrared Physics and Technology 36, 217-224 (1995).
[CrossRef]

Kersting, R.

H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Klein, N.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

Knoll, B.

A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
[CrossRef]

Komiyama, S.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

Kramer, A.

A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
[CrossRef]

Kuhn, S.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Kuipers, L.

E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007).
[CrossRef] [PubMed]

Kurz, H.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

Kutsuwa, T.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

Kuzel, P.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

Lahl, P.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

Lecaque, R.

Leslie, K.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Long, L. L.

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
[CrossRef]

Maksymov, I.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Maradudin, A. A.

D. L. Mills and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B 39, 1569-1574 (1989).
[CrossRef]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Merlin, R.

R. Merlin, "Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing," Science 317, 927-929 (2007).
[CrossRef] [PubMed]

Merz, R.

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

Mills, D. L.

D. L. Mills and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B 39, 1569-1574 (1989).
[CrossRef]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Murphy, J. B.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Nelson, K. A.

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
[CrossRef]

Nerkararyan, K. V.

K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008).
[CrossRef]

Novotny, L.

L. Novotny and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).
[CrossRef] [PubMed]

Ordal, M. A.

Patrini, M.

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

Pellemans, H. P. M.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007).
[CrossRef] [PubMed]

Poppe, U.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Renn, A.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Saxler, J.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

Seelig, J.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Shen, Y.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
[CrossRef]

Stockle, D.

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
[CrossRef]

Stranick, S. J.

L. Novotny and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).
[CrossRef] [PubMed]

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
[CrossRef]

Tsang, T. Y.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

van de Corput, M.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

van derWeide, D.W.

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

Verhagen, E.

E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007).
[CrossRef] [PubMed]

Wang, X. J.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Ward, C. A.

Watanabe, T.

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Wyman, C.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

Yeh, K. L.

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
[CrossRef]

Zenneck, J.

J. Zenneck, "Fortplfanzung ebener elektromagnetischer Wellen laengs einer ebenen Leiterflaeche," Ann. Phys. 23, 846-866 (1907).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Ann. Phys. (1)

J. Zenneck, "Fortplfanzung ebener elektromagnetischer Wellen laengs einer ebenen Leiterflaeche," Ann. Phys. 23, 846-866 (1907).
[CrossRef]

Ann. Phys. Chem. (1)

A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008).
[CrossRef]

Infrared Physics and Technology (1)

F. Keilmann, "FIR microscopy," Infrared Physics and Technology 36, 217-224 (1995).
[CrossRef]

J. Appl. Phys. (1)

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005).
[CrossRef]

J. Biol. Phys. (1)

F. Keilmann, "Status of THz-to-visible nanospectroscopy development," J. Biol. Phys. 29, 195-199 (2003).
[CrossRef]

J. Opt. A (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005).
[CrossRef]

Micron (1)

A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996).
[CrossRef]

Nano Lett. (4)

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007).
[CrossRef] [PubMed]

F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007).
[CrossRef] [PubMed]

Nature (1)

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000).
[CrossRef] [PubMed]

Nature Biotechnology (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003).
[CrossRef]

Nature Materials (1)

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Nature Photonics (1)

M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
[CrossRef]

Opt. Commun. (1)

F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004).
[CrossRef]

D. L. Mills and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B 39, 1569-1574 (1989).
[CrossRef]

Phys. Rev. Lett. (3)

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006).
[CrossRef]

Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007).
[CrossRef]

Plasmonics (1)

K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008).
[CrossRef]

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Science (2)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

R. Merlin, "Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing," Science 317, 927-929 (2007).
[CrossRef] [PubMed]

Other (2)

F. Keilmann, "Scanning tip for optical radiation," in U. S. Patent 4,994,818, pp. 1-7 (Max Plank Geselschaft, Germany, USA, 1991).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometry and properties of the THz TM mode in a parallel metal-slab waveguide. (a) Schematic of the waveguide. The width of the dielectric gap a and the skin depth ls are indicated. (b) An instantaneous distribution of the longitudinal electric field Ey along the propagation coordinate y for a=10 µm and frequency 1 THz in a silver-vacuum-silver waveguide. (c) The same as in panel (b) but for a=200 nm. (d) Modal refraction index n=k/k0 (Ren is denoted by the red line and Imn by the blue line) as a function of the waveguide width a. Dashed green line indicates the value of n for the perfect conductor. Skin-depth value is shown by the vertical dashed line.

Fig. 2.
Fig. 2.

Adiabatic concentration of THz field energy in a graded waveguide, where a dielectric wedge is surrounded by the thick silver layer. (a) Schematic of energy concentration, where θ is the wedge opening angle, the arrow indicates the direction of propagation of the THz wave, and the red highlights the area of the adiabatic concentration. The orientation of the coordinate system is shown in the inset. (b) An instantaneous distribution of the transverse electric field Ez of the THz wave propagating and concentrating along the wedge waveguide for the last 6 mm of the propagation toward the edge. Note the difference in scales in the z and y directions. (c) An instantaneous spatial distribution of the transverse electric field Ez close to the edge of the wedge, for the last 640 µm of the propagation. (d) The same as (c) but for the longitudinal (with respect to the propagation direction) component of the field Ey . (e) The same as (c) but for the transverse component of the magnetic field Hx . The units of these field components are arbitrary but consistent between the panels. (f) Dependence of THz field intensity in the middle of waveguide on the dielectric gap width a (the red line). The blue curve displays the dependence on a of the adiabatic parameter δ, scaled by a factor of 5. The values of a indicated at the successive horizontal axis ticks differ by a factor of 10-1/2, i.e., by 5 dB.

Fig. 3.
Fig. 3.

Terahertz energy concentration in adiabatically tapered curved-wedge waveguide. (a) Instantaneous distribution of the transverse component of the THz electric field Ez (in the central plane z=0) as a function of the coordinate y along the propagation direction for the last 400 µm of the propagation. (b) The same as in panel (a) but for the longitudinal electric field component Ey . (c) The same as panel (a) but for the transverse magnetic field Hx . The units for the fields are arbitrary but consistent between the panels. (d) The THz field intensity I (relative to the intensity I 0 at the entrance of the waveguide) as a function of the dielectric gap thickness a is shown by the red line. The adiabatic parameter scaled by a factor of 10 as a function of a is indicated by the blue line. The values of a indicated at the horizontal axis ticks correspond to the values of y at the ticks of panels (a)–(f).

Fig. 4.
Fig. 4.

Geometry, modal index of refraction, and THz energy concentration in conically-tapered metal-dielectric waveguide. (a) Schematic of geometry and energy concentration. The central wire and the coax shell are shown along with the schematic of the THz energy concentration. (b) Dependence of modal refraction index n in coaxial waveguide on the dielectric gap width a for two central wire radii: r=10 µm and r=60 nm. The color coding of the lines is indicated. The dielectric in the gap is vacuum. (c) Instantaneous distribution of the radial THz electric field amplitude Eρ in the cross section of the coax for the last 3 mm of the propagation toward the tip. The amplitude of the field is color coded by the bar at the top of the panel. (d) Instantaneous distribution of the longitudinal THz electric field amplitude Ey on the coordinate y for the last 620 µm of the propagation. (e) The same as (d) but for the transverse magnetic field Hφ . The units of these field components are arbitrary but consistent between the panels. (f) Dependence of THz field intensity in the middle of waveguide gap on the waveguide outer radius R=r+a is shown in red. The blue curve displays the adiabatic parameter δ as a function of R, scaled by a factor of 102. The values of R indicated at the successive horizontal axis ticks differ by a factor of 10-1/2, i.e., by 5 dB.

Fig. 5.
Fig. 5.

Adiabatic terahertz energy concentration in a self-similarly curved, funnel-shaped coaxial waveguide, where the metal is silver, and the dielectric in the gap is vacuum. The dielectric gap is between the pair of the neighboring curved lines, and the metal is everywhere else. (a) Instantaneous distribution of the radial (transverse) component Eρ of the electric field of the guided THz wave as a function of the propagation coordinate along the wedge y for the last 600 µm of the propagation. (b) The same for the longitudinal electric field component Ey . (c) The same for transverse magnetic field Hφ , whose lines form circles around the central metal wire. The units of these field components are arbitrary but consistent between the panels. (d) The THz intensity I as a function of the waveguide radius R, displayed relative to the intensity I 0 at the beginning of the waveguide (red line). Adiabatic parameter δ multiplied by a factor of 10 as a function of R (blue line). The values of the radius R shown at the ticks correspond to those of y shown in panels (a)–(c).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Q 2 a l s ,
n = ε d ( 1 + l s ( 1 + i ) a ) 1 2 ε d ( 1 + i l s 2 a ) ,
δ = d ( Re k 1 ) dy 1 , da dy 1 ,
Re n 1 ( a ) = k 0 δ ( y ) dy ,
tanh ( κ d a 2 ) = ε d κ m ε m κ d
( ε d a l s ƛ 2 ) 1 2 1 .
( I 0 ( κ d r ) I 0 ( κ m r ) ξ I 1 ( κ d r ) I 1 ( κ m r ) ) ( K 0 ( κ d R ) K 0 ( κ m R ) ξ K 1 ( κ d R ) K 1 ( κ m R ) ) =
( K 0 ( κ d r ) I 0 ( κ m r ) + ξ K 1 ( κ d r ) I 1 ( κ m r ) ) ( I 0 ( κ d R ) K 0 ( κ m R ) + ξ I 1 ( κ d R ) K 1 ( κ m R ) ) ,
β ± β 2 4 α γ 2 α = ε d κ m ε m κ d .
n = ε d ( 1 + ( I 0 ( κ m r ) I 1 ( κ m r ) + K 0 ( κ m R ) K 1 ( κ m R ) ) l s ( 1 + i ) 2 a ) 1 2 ,
δ = d dy 1 k ( y ) 1 .
ϕ ( y ) = k 0 n ( y ) dy ,
ν g ( y ) W ( y , z ) dz = const ,

Metrics