Abstract

We present novel metamaterial structures based upon various planar wallpaper groups, in both hexagonal and square unit cells. An investigation of metamaterials consisting of one, two, and three unique sub-lattices with resonant frequencies in the terahertz (THz) was performed. We describe the theory, perform simulations, and conduct experiments to characterize these multiple element metamaterials. A method for using these new structures as a means for bio/chemical hazard detection, as well as electromagnetic signature control is proposed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-614 (1968).
    [CrossRef]
  2. D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  5. A. Grbic and G. V. Elefheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett 92, 117403 (2004).
    [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
    [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  9. M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
    [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
    [CrossRef]
  12. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
    [CrossRef]
  13. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  14. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  15. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  16. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, "Negative index metamaterial combining magnetic resonators with metal films," Opt. Express 14, 7872-77 (2006).
    [CrossRef] [PubMed]
  17. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
    [CrossRef]
  18. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005)
    [CrossRef]
  19. D. Schattschneider, "The Plane Symmetry Groups: Their Recognition and Notation," The American Mathematical Monthly, Vol.  85, No. 6, pp. 439-450 (1978)
    [CrossRef]
  20. T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
    [CrossRef]
  21. [18] being an execption having a hexagonal lattice.
  22. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008).
    [CrossRef] [PubMed]
  23. R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
    [CrossRef]
  24. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008).
    [CrossRef]
  25. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
    [CrossRef]
  26. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
    [CrossRef]
  27. HFSS, Ansoft Corporation, Copyright (2008).
  28. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  29. H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
    [CrossRef] [PubMed]
  30. Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
    [CrossRef]
  31. A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
    [CrossRef]
  32. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  33. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
    [CrossRef] [PubMed]
  34. T. M. Korter and D. F. Plusquellic, "Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared," Chem. Phys. Lett. 385, 45-51 (2004).
    [CrossRef]
  35. D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
    [CrossRef]
  36. Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
    [CrossRef]
  37. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations," Opt. Express,  16, 1786-1795 (2008).
    [CrossRef] [PubMed]
  38. M. Osawa, "Surface Enhanced Infrared Absorption," Topics Appl. Phys. 81163-187 (2001), and references contained therein.
    [CrossRef]
  39. M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction (New York: Wiley, 1989) pp. 154-163.
  40. B. V. Chirikov, "A Universal Instability of Many-Dimensional Oscillator Systems," Phys. Rep. 52264-379 (1979).
    [CrossRef]
  41. S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
    [CrossRef] [PubMed]
  42. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  43. B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
    [CrossRef]
  44. I. Puscasu and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92233102 (2008).
    [CrossRef]

2008 (6)

2007 (5)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

2006 (9)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, "Negative index metamaterial combining magnetic resonators with metal films," Opt. Express 14, 7872-77 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005)
[CrossRef]

2004 (6)

T. M. Korter and D. F. Plusquellic, "Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared," Chem. Phys. Lett. 385, 45-51 (2004).
[CrossRef]

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

A. Grbic and G. V. Elefheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett 92, 117403 (2004).
[CrossRef] [PubMed]

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

2002 (1)

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

2001 (3)

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

M. Osawa, "Surface Enhanced Infrared Absorption," Topics Appl. Phys. 81163-187 (2001), and references contained therein.
[CrossRef]

2000 (4)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1979 (1)

B. V. Chirikov, "A Universal Instability of Many-Dimensional Oscillator Systems," Phys. Rep. 52264-379 (1979).
[CrossRef]

1978 (1)

D. Schattschneider, "The Plane Symmetry Groups: Their Recognition and Notation," The American Mathematical Monthly, Vol.  85, No. 6, pp. 439-450 (1978)
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-614 (1968).
[CrossRef]

Abbott, D.

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Allis, D. G.

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

Andrew, G. O.

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Aydin, K.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Basov, D. N.

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Bingham, C.

Bingham, C. M.

Bjarnason, J. E.

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

Bolivar, P. H.

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

Boreman, G. D.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

Bossard, J. A.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

Bosserhoff, A.

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

Brener, I.

Brown, E. R.

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

Brucherseifer,

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Bulu, I.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Buttner, R.

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

Cai, W.

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Chettiar, U. K.

Chirikov, B. V.

B. V. Chirikov, "A Universal Instability of Many-Dimensional Oscillator Systems," Phys. Rep. 52264-379 (1979).
[CrossRef]

Cho, S.-Y.

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Cummer, S. A.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

Djuric, Z.

Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
[CrossRef]

Dolling, G.

Drachev, V. P.

Driscoll, T.

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Drupp, R. P.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

Elefheriades, G. V.

A. Grbic and G. V. Elefheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett 92, 117403 (2004).
[CrossRef] [PubMed]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Fedor, A. M.

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

Gilderdale, D. J.

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

Gokkavas, M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Grbic, A.

A. Grbic and G. V. Elefheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett 92, 117403 (2004).
[CrossRef] [PubMed]

Guven, K.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Hajnal, J. V.

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

Han, J.

Hand, T. H.

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Jakšic, O.

Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
[CrossRef]

Jakšic, Z.

Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
[CrossRef]

Jokerst, N. M.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Kildishev, A. V.

Klar, T. A.

Kment, C.

Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
[CrossRef]

Korter, T. M.

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

T. M. Korter and D. F. Plusquellic, "Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared," Chem. Phys. Lett. 385, 45-51 (2004).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Kotter, D.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

Kurz, H.

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

Landy, N. I.

Larkman, D. J.

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Li, L.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

Linden, S.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Liu, H.

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

MacColl, R.

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Mannella, C. A

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Mayer, T. S.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

Menikh, A.

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Mickan, S. P.

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Mock, J.

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

Monacelli, B.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

Munch, J.

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Munk, B. A.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

Nagel, M.

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

O’Hara, J. F.

Osawa, M.

M. Osawa, "Surface Enhanced Infrared Absorption," Topics Appl. Phys. 81163-187 (2001), and references contained therein.
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Ozbay, E.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Padilla, W. J.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Palit, S.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Penciu, R. S.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Plusquellic, D. F.

T. M. Korter and D. F. Plusquellic, "Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared," Chem. Phys. Lett. 385, 45-51 (2004).
[CrossRef]

Pryor, J. B.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

Puscasu, I.

I. Puscasu and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92233102 (2008).
[CrossRef]

Ren, T.

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sarychev, A. K.

Schaich, W. L.

I. Puscasu and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92233102 (2008).
[CrossRef]

Schattschneider, D.

D. Schattschneider, "The Plane Symmetry Groups: Their Recognition and Notation," The American Mathematical Monthly, Vol.  85, No. 6, pp. 439-450 (1978)
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Siltshire, M. C. K.

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

Singh, R.

Smirnova, E.

Smith, D. R.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Smith, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008).
[CrossRef]

Tang, Y. U.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

Tao, H.

Taylor, A. J.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations," Opt. Express,  16, 1786-1795 (2008).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Tyler, T.

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-614 (1968).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Wegener, M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Werner, D. H.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

Ye, Y-H.

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Young, I. R.

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

Yuan, H.-K.

Yuan, Y.

Zhan, X.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhang, X.-C.

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

Zhang, X-C

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007).
[CrossRef]

R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008).
[CrossRef]

Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
[CrossRef]

I. Puscasu and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92233102 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004).
[CrossRef]

Chem. Phys. Lett. (2)

T. M. Korter and D. F. Plusquellic, "Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared," Chem. Phys. Lett. 385, 45-51 (2004).
[CrossRef]

D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007).
[CrossRef]

IEEE T Ant. Prop (2)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006).
[CrossRef]

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007).
[CrossRef]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002).
[CrossRef] [PubMed]

Phys. Rep. (1)

B. V. Chirikov, "A Universal Instability of Many-Dimensional Oscillator Systems," Phys. Rep. 52264-379 (1979).
[CrossRef]

Phys. Rev. B (2)

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Phys. Rev. Lett (1)

A. Grbic and G. V. Elefheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett 92, 117403 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Science (6)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006).
[CrossRef] [PubMed]

M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-614 (1968).
[CrossRef]

The American Mathematical Monthly (1)

D. Schattschneider, "The Plane Symmetry Groups: Their Recognition and Notation," The American Mathematical Monthly, Vol.  85, No. 6, pp. 439-450 (1978)
[CrossRef]

Topics Appl. Phys. (1)

M. Osawa, "Surface Enhanced Infrared Absorption," Topics Appl. Phys. 81163-187 (2001), and references contained therein.
[CrossRef]

Other (3)

M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction (New York: Wiley, 1989) pp. 154-163.

[18] being an execption having a hexagonal lattice.

HFSS, Ansoft Corporation, Copyright (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Group classification for two dimensional metamaterial designs.

Fig. 2.
Fig. 2.

Simulated unit cell and a single primitive cell. (a) Diagram of simulated n=3 hexagonal MM. Also shown are the assigned periodic boundary pairs used in simulation. (b) Single primitive cell with dimensions labeled. The lower portion of the figure gives the values of the labeled parameters used in our designs.

Fig. 3.
Fig. 3.

Simulated electric field and surface current for n=3 hexagonal metamaterial(a) current density and electric field plots at ω 1 (b) current density and electric field plots at ω 2 (c) current density and electric field plots at ω 3.

Fig. 4.
Fig. 4.

Simulation and experimental results for our different n=1,2, and 3 metamaterial designs. The left column shows the unit cell models, images taken of the fabricated samples are in the middle column, and plots of simulated (black curve) and experimental data (red curve) are shown in the right column.

Fig. 5.
Fig. 5.

Computational (left) and experimental (right) measurements of the n=3 hexagonal metamaterial, and the n=2 square checkerboard metamaterial, compared to experimental measurements of the molecule biotin. Simulated and experimental transmission spectra of the hexagonal metamaterial has been shifted up by 20% for clarity and T(ω) of biotin is in arbitrary units.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ ( ω ) , μ ˜ ( ω ) = ε , μ + m F m ω 2 ω 0 m 2 ω 2 i Γ m ω
F m = a m n A

Metrics