Abstract

We report ~22 dB of Raman gain in single mode As2Se3 chalcogenide glass fiber using 15 ps optical pump pulses from 1470 nm to 1560 nm. We employ a novel technique of cross-phase modulation induced sideband amplification to map out the Raman gain spectrum of this glass, and investigate the role of both degenerate and non-degenerate (ND) two-photon absorption (TPA). We find that for materials such as As2Se3 where the Raman gain coefficient (gR) and TPA are comparable, it is critical to know and account for the role of both of these in order to achieve appreciable Raman gain. This is highlighted by our results, where we achieve significantly higher Raman gain at the longest pump wavelength (1560 nm), despite the fact that the Raman gain coefficient itself (gR) is smallest at this wavelength. This occurs because the TPA is significantly larger for shorter wavelengths in As2Se3. We conclude, therefore, that for Raman gain applications in As2Se3, L-band operation is strongly favored over C-band operation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Radic, D. J. Moss, and B. J. Eggleton, "Nonlinear optics in communications: from crippling impairment to ultrafast tools," Opt. Fiber Telecommun. VA: Components and Subsystems, 759-828 (2008).
  2. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
    [CrossRef] [PubMed]
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  4. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
    [CrossRef]
  5. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, and S. C. Currie, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006).
    [CrossRef] [PubMed]
  6. M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
    [CrossRef]
  7. V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
    [CrossRef] [PubMed]
  8. V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
    [CrossRef] [PubMed]
  9. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
    [CrossRef]
  10. L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637 (2005).
    [CrossRef] [PubMed]
  11. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008).
    [CrossRef] [PubMed]
  12. G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
    [CrossRef]
  13. N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, J. McMullin, and S. Kasap, "Small core rib waveguides with embedded gratings in As2Se3 glass," Opt. Express 12, 6270-6277 (2004).
    [CrossRef] [PubMed]
  14. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
    [CrossRef]
  15. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, "Raman gain measurements and photo-induced transmission effects of germanium-and arsenic-based chalcogenide glasses," Opt. Express 14, 11702-11708 (2006).
    [CrossRef] [PubMed]
  16. S. D. Jackson and G. Anzueto-Sánchez, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett. 88, 221106 (2006).
    [CrossRef]
  17. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
    [CrossRef]
  18. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14, 1140-1142 (1989).
    [CrossRef] [PubMed]
  19. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
    [CrossRef]
  20. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  21. L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]
  22. V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
    [CrossRef] [PubMed]
  23. V. M. Lyubin and V. K. Tikhomirov, "Photodarkening and Photoinduced Anisotropy in Chalcogenide Vitreous Semiconductor Films," J. Non-Cryst. Solids 114, 133-135 (1989).
    [CrossRef]
  24. V. M. Lyubin and V. K. Tikhomirov, "Novel photo-induced effects in chalcogenide glasses," J. Non-Cryst. Solids 135, 37-48 (1991).
    [CrossRef]
  25. J. M. Harbold, F. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  26. C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
    [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  28. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  29. A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
    [CrossRef]
  30. M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, "Nondegenerate optical Kerr effect in semiconductors," IEEE J. Quantum Electron. 30, 249-255 (1994).
    [CrossRef]

2008 (2)

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008).
[CrossRef] [PubMed]

2007 (2)

V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

2006 (8)

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

S. D. Jackson and G. Anzueto-Sánchez, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, and S. C. Currie, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, "Raman gain measurements and photo-induced transmission effects of germanium-and arsenic-based chalcogenide glasses," Opt. Express 14, 11702-11708 (2006).
[CrossRef] [PubMed]

2005 (3)

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637 (2005).
[CrossRef] [PubMed]

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

2004 (2)

2003 (1)

2002 (1)

2001 (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

1996 (1)

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

1995 (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

1994 (1)

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, "Nondegenerate optical Kerr effect in semiconductors," IEEE J. Quantum Electron. 30, 249-255 (1994).
[CrossRef]

1991 (1)

V. M. Lyubin and V. K. Tikhomirov, "Novel photo-induced effects in chalcogenide glasses," J. Non-Cryst. Solids 135, 37-48 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1989 (3)

Aggarwal, I.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

Aggarwal, I. D.

Aitken, B. G.

Andrejco, M. J.

Antoine, K.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Baker, N. J.

Barthélémy, A.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Bolger, J. A.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

Brawley, G. A.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

Carlie, N.

Choi, D. Y.

Couderc, V.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Couzi, M.

Currie, S. C.

Darwish, A. M.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

DeCorby, R.

Delfyett, P.

DeLong, K. W.

Donnelly, J. P.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

Dwivedi, P.

Eggleton, B.

Eggleton, B. J.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008).
[CrossRef] [PubMed]

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

S. Radic, D. J. Moss, and B. J. Eggleton, "Nonlinear optics in communications: from crippling impairment to ultrafast tools," Opt. Fiber Telecommun. VA: Components and Subsystems, 759-828 (2008).

Finsterbusch, K.

Freeman, M. J.

Fu, L.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008).
[CrossRef] [PubMed]

V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637 (2005).
[CrossRef] [PubMed]

Gordon, J. P.

Groves, S. H.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Harbold, J. M.

Haugen, C.

Haus, H. A.

Hodelin, J.

Ilday, F.

Ippen, E. P.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

Islam, M. N.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Jackson, S. D.

S. D. Jackson and G. Anzueto-Sánchez, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Jain, H.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kasap, S.

Kuditcher, A.

Kulkarni, O. P.

Kumar, M.

Lamont, M. R. E.

Le, H. Q.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

Lee, D. J.

Lenz, G.

Li, W.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Littler, I. C.

Littler, I. C. M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Lopez, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Lucas, J.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Luther-Davies, B.

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

Lyubin, V. M.

V. M. Lyubin and V. K. Tikhomirov, "Novel photo-induced effects in chalcogenide glasses," J. Non-Cryst. Solids 135, 37-48 (1991).
[CrossRef]

V. M. Lyubin and V. K. Tikhomirov, "Photodarkening and Photoinduced Anisotropy in Chalcogenide Vitreous Semiconductor Films," J. Non-Cryst. Solids 114, 133-135 (1989).
[CrossRef]

Madden, S.

Mägi, E. C.

McMullin, J.

Mizrahi, V.

Moss, D.

Moss, D. J.

V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

S. Radic, D. J. Moss, and B. J. Eggleton, "Nonlinear optics in communications: from crippling impairment to ultrafast tools," Opt. Fiber Telecommun. VA: Components and Subsystems, 759-828 (2008).

Myneni, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Nguyen, H.

Nguyen, H. C.

Nguyen, V. Q.

Pelusi, M.

Pelusi, M. D.

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

Petit, L.

Ponnampalam, N.

Pope, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Pureza, P. C.

Quémard, C.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Radic, S.

S. Radic, D. J. Moss, and B. J. Eggleton, "Nonlinear optics in communications: from crippling impairment to ultrafast tools," Opt. Fiber Telecommun. VA: Components and Subsystems, 759-828 (2008).

Richardson, K.

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, "Raman gain measurements and photo-induced transmission effects of germanium-and arsenic-based chalcogenide glasses," Opt. Express 14, 11702-11708 (2006).
[CrossRef] [PubMed]

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Rivero, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Rochette, M.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637 (2005).
[CrossRef] [PubMed]

Roelens, M. A. F.

Ruan, Y.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Saifi, M. A.

Sanghera, J.

Sanghera, J. S.

Schulte, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Seal, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

Shaw, L. B.

Sheik-Bahae, M.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, "Nondegenerate optical Kerr effect in semiconductors," IEEE J. Quantum Electron. 30, 249-255 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Shokooh-Saremi, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Slusher, R. E.

Smektala, F.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Stegeman, G.

Stegeman, G. I.

Stegeman, R.

Stolen, R. H.

Ta'eed, V.

Ta'eed, V. G.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Terry, F. L.

Thielen, P. A.

Tikhomirov, V. K.

V. M. Lyubin and V. K. Tikhomirov, "Novel photo-induced effects in chalcogenide glasses," J. Non-Cryst. Solids 135, 37-48 (1991).
[CrossRef]

V. M. Lyubin and V. K. Tikhomirov, "Photodarkening and Photoinduced Anisotropy in Chalcogenide Vitreous Semiconductor Films," J. Non-Cryst. Solids 114, 133-135 (1989).
[CrossRef]

Tomlinson, W. J.

Van Stryland, E. W.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, "Nondegenerate optical Kerr effect in semiconductors," IEEE J. Quantum Electron. 30, 249-255 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wang, J.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, "Nondegenerate optical Kerr effect in semiconductors," IEEE J. Quantum Electron. 30, 249-255 (1994).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wise, F. W.

Xia, C.

Yeom, D. I.

Appl. Phys. Lett. (2)

S. D. Jackson and G. Anzueto-Sánchez, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

Electron. Lett. (2)

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, "Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method," Electron. Lett. 44, 846-847 (2008).
[CrossRef]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, "Nondegenerate optical Kerr effect in semiconductors," IEEE J. Quantum Electron. 30, 249-255 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-order nonlinear spectroscopy in AsS chalcogenide glass fibers," J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

J. Non-Cryst. Solids (2)

V. M. Lyubin and V. K. Tikhomirov, "Photodarkening and Photoinduced Anisotropy in Chalcogenide Vitreous Semiconductor Films," J. Non-Cryst. Solids 114, 133-135 (1989).
[CrossRef]

V. M. Lyubin and V. K. Tikhomirov, "Novel photo-induced effects in chalcogenide glasses," J. Non-Cryst. Solids 135, 37-48 (1991).
[CrossRef]

J. of Appl. Phys. (1)

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, and K. Antoine, "Role of S/ Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. of Appl. Phys. 98, 053503 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Opt. Express (8)

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, J. McMullin, and S. Kasap, "Small core rib waveguides with embedded gratings in As2Se3 glass," Opt. Express 12, 6270-6277 (2004).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637 (2005).
[CrossRef] [PubMed]

O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, and S. C. Currie, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, "Raman gain measurements and photo-induced transmission effects of germanium-and arsenic-based chalcogenide glasses," Opt. Express 14, 11702-11708 (2006).
[CrossRef] [PubMed]

V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

S. Radic, D. J. Moss, and B. J. Eggleton, "Nonlinear optics in communications: from crippling impairment to ultrafast tools," Opt. Fiber Telecommun. VA: Components and Subsystems, 759-828 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Calculated dispersion of the Kerr response (solid curve) and TPA (dashed curve) [3] of As2Se3 glass as a function of normalised photon energy Egap/hν, where Egap is the optical bandbag, ~1.78 eV, corresponding to a wavelength of 700 nm. Thus, the half optical bandgap is at ~1400 nm. The highlighted optical region is under investigation in our experiment, where Kerr nonlinearity (n 2), TPA (β TPA ) and Raman gain (g R ) all play a significant role.

Fig. 2.
Fig. 2.

Spectral and temporal evolution of pump pulses (λp) co-propagating with a CW probe (λs) along As2Se3 fiber. The pump pulses spectrally broaden due to SPM, and induce sidebands on the probe via XPM, which are then amplified due to Raman gain. The result is that the pump temporally induces a synchronized pulse on the CW probe due to Raman gain.

Fig. 3.
Fig. 3.

Schematic diagram of TPA processes. (a) Degenerate TPA. (b) Non-degenerate TPA.

Fig. 4.
Fig. 4.

Experimental setup. OPO: Optical parametric oscillator, BS: Beam splitter, PC: Polarization controller, PM: Power meter, OSA: Optical spectrum analyzer. A 99:1 coupler is included to monitor the input power.

Fig. 5.
Fig. 5.

Power transfer curve for λp=1470 nm, 1503 nm, 1560 nm.

Fig. 6.
Fig. 6.

Measured and simulated output spectra for varying incident peak powers, for pump wavelength λp=1560 nm and probe wavelength λs=1619 nm (50 µW).

Fig. 7.
Fig. 7.

(a) Experimentally measured cross-phase modulation induced sideband amplification due to Raman gain with varying probe wavelength for a pump wavelength of 1503nm. The amount of amplification depends on the probe’s position within the Raman gain spectrum (b), obtained by integrating the amplified signal sidebands. The dashed curve in (b) is a guide to the eye.

Fig. 8.
Fig. 8.

Raman gain as a function of peak power, for λp=1470 nm, 1503 nm, 1560 nm and λs=1523 nm, 1558 nm and 1619 nm respectively.

Tables (1)

Tables Icon

Table 1. Summary of results

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I p d z = α I p β d I p I p ,
d I s d z = α I s + ( g R 2 β n d ) I p I s ,
I p ( L ) = I p ( 0 ) exp ( α L ) 1 + β d I p ( 0 ) [ 1 exp ( α L ) ] α .
I s ( L ) = I s ( 0 ) exp [ α ( g R 2 β n d ) β d { L + 1 α ln [ ( 1 + β d I p ( 0 ) α ) e α L β d I p ( 0 ) α ] } α L ] .

Metrics