Abstract

Following our recent experimental approach to excitation of surface plasmon polaritons induced by optical vortex beams [5], we report further analysis and verification of the surface plasmon interference pattern formed by locally excited standing surface plasmon polaritons in a metal/dielectric film. Our simulation model can be demonstrated by using angular spectrum representation. The generated standing interference pattern has potential as a resolution enhancement technique for sub-diffraction imaging.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, Berlin, 1988).
    [PubMed]
  2. G. E. Cragg and P. T. C. So, "Lateral resolution enhancement with standing evanescent waves," Opt. Lett. 25, 46-48 (2000).
    [CrossRef]
  3. E. Chung, D. K. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," Opt. Lett. 31, 945-947 (2006).
    [CrossRef] [PubMed]
  4. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
    [CrossRef] [PubMed]
  5. P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
    [CrossRef]
  6. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, "Surface plasmon interference excited by tightly focused laser beams," Opt. Lett. 32,2535-2537 (2007).
    [CrossRef] [PubMed]
  7. H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am B 15,1381-1386 (1998).
    [CrossRef]
  8. D. Ganic, X.S. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-21-2747.
    [CrossRef] [PubMed]
  9. Q. W. Zhan, "Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam," Opt. Lett. 31,1726-1728 (2006).
    [CrossRef] [PubMed]
  10. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
    [CrossRef] [PubMed]
  11. D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
    [CrossRef] [PubMed]
  12. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
    [CrossRef] [PubMed]
  13. B. Richards and E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System," Proc. Roy. Soc. (London). A 253, 358-379 (1959).
    [CrossRef]
  14. E. Wolf, "Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field," Proc. Roy. Soc. (London). A 253, 349-357 (1959).
    [CrossRef]
  15. L. Novotny and B. Hetch, Principle of Nano-optics (Cambridge U. Press, 2006)

2008 (1)

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

2007 (1)

2006 (2)

2005 (2)

V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
[CrossRef] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am B 15,1381-1386 (1998).
[CrossRef]

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
[CrossRef] [PubMed]

Almazov, A. A.

V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
[CrossRef] [PubMed]

Axelrod, D.

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
[CrossRef] [PubMed]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

Bruyant, A.

Burge, R. E.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Chung, E.

Cragg, G. E.

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
[CrossRef] [PubMed]

Gan, X.S.

Ganic, D.

Gu, M.

Huang, C.

Ignatovich, F.

Kano, H.

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am B 15,1381-1386 (1998).
[CrossRef]

Kawata, S.

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am B 15,1381-1386 (1998).
[CrossRef]

Khonina, S. N.

V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
[CrossRef] [PubMed]

Kim, D. K.

Kotlyar, V. V.

V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
[CrossRef] [PubMed]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
[CrossRef] [PubMed]

Lin, J.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Mei, T.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Mizuguchi, S.

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am B 15,1381-1386 (1998).
[CrossRef]

Mu, G. G.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System," Proc. Roy. Soc. (London). A 253, 358-379 (1959).
[CrossRef]

So, P. T. C.

Soifer, V. A.

V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
[CrossRef] [PubMed]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Tan, P. S.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
[CrossRef] [PubMed]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Wang, Q.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System," Proc. Roy. Soc. (London). A 253, 358-379 (1959).
[CrossRef]

E. Wolf, "Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field," Proc. Roy. Soc. (London). A 253, 349-357 (1959).
[CrossRef]

Yuan, X.-C.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

Zhan, Q. W.

Appl. Phys. Lett (1)

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, "Surface plasmon polaritons generated by optical vortex beams," Appl. Phys. Lett 92, 111108 (2008)
[CrossRef]

J. Opt. Soc. Am A Opt. Image Sci. Vis. (1)

V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am A Opt. Image Sci. Vis. 22,849-861 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am B (1)

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am B 15,1381-1386 (1998).
[CrossRef]

Nature (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366, 44-48 (1993).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Traffic (1)

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

Other (4)

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, Berlin, 1988).
[PubMed]

B. Richards and E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System," Proc. Roy. Soc. (London). A 253, 358-379 (1959).
[CrossRef]

E. Wolf, "Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field," Proc. Roy. Soc. (London). A 253, 349-357 (1959).
[CrossRef]

L. Novotny and B. Hetch, Principle of Nano-optics (Cambridge U. Press, 2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(Color online) Theoretical (a) reflection and (b) transmission SPR curves for the Au configurations, considering an analyte refractive index is 1 (air)

Fig. 2.
Fig. 2.

(Color online) Illustration of SPPs generated by optical vortex beams which focus on the Au thin film under resonant condition.

Fig. 3.
Fig. 3.

(Color online) Numerical simulation result for the excitation of surface plasmon intensity generated by optical vortex beam for an Au/air interface

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k sp = ω 0 c ( ε s ε m ε s + ε m ) 1 2
k light = ( ω 0 c ) ε d sin θ SP = k SP
E t ( x , y , z ) = A k x k y S ( k x , k y ) 1 k zj exp [ i ( k x x + k y y ± k zj z ) ] d k x d k y
E z ( ρ , φ ) 0 θ max 0 2 π E inc t p ( θ ) sin 2 θ cos θ exp [ i z ( k z 1 k z 2 ) ]
± exp [ i k 2 ρ sin θ cos ( ϕ φ ) ] cos ϕ d θ d ϕ
t ijk p = t ij p t jk p exp ( i k zj d ) 1 + r ij p r jk p exp ( 2 i k zj d )
0 2 π cos ϕ exp [ i l ϕ + i k 2 ρ sin θ cos ( ϕ φ ) ] d ϕ
= π i l + 1 exp [ i ( l + 1 ) φ ] [ J l + 1 ( k 2 ρ sin θ ) exp ( i 2 φ ) J l 1 ( k 2 ρ sin θ ) ]
E z ( ρ , φ ) e i ( l + 1 ) φ 0 θ max E 0 exp [ i z ( k z 1 k z 2 ) ] t p ( θ ) sin 2 θ cos θ
± [ J l + 1 ( k 2 ρ sin θ ) exp ( i 2 φ ) J l 1 ( k 2 ρ sin θ ) ] d θ

Metrics