Abstract

A novel surface plasmon resonance (SPR) sensor based on an integrated planar and polychromatic light source is presented. The sensor comprises an organic light emitting diode (OLED) and a metallic sensing layer located on opposite sides of a glass prism. We successfully fabricated and tested prototype sensors based on this approach by the use of different prism geometries and OLEDs with blue, green and red emission color. We investigated the angular and wavelength dependent SPR dispersion relation for sensing layers consisting of silver and gold in contact with air. Further on we demonstrated the sensor function by real time monitoring of temperature changes inside an adjacent water reservoir as well as by recording the dissolving process of sodium chloride in water. The presented technique offers the advantage that there is no necessity to couple light from external bulky sources such as lasers or halogen lamps into the sensing device which makes it particularly interesting for miniaturization.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola and S. S. Yee, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis," Sens. Actuators B 37, 145-150 (1996).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 2.
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), Chap. 2-3.
  4. K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
    [CrossRef]
  5. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  7. M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
    [CrossRef]
  8. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
    [CrossRef] [PubMed]
  9. V. Lirtsman, M. Golosovsky, and D. Davidov, "Infrared surface plasmon resonance technique for biological studies," J. Appl. Phys. 103, 014702 (2008).
    [CrossRef]
  10. R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Curr. Opin. Biotechnol. 11, 54-61 (2000).
    [CrossRef] [PubMed]
  11. B. K. Singh and A. C. Hillier, "Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array," Anal. Chem. 78, 2009-2018 (2006).
    [CrossRef] [PubMed]
  12. M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
    [CrossRef]
  13. M. W. Foster, D. J. Ferrell, and R. A. Lieberman, "Surface plasmon resonance biosensor miniaturization," Proc. SPIE 2293, 122-131 (1994).
    [CrossRef]
  14. J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
    [CrossRef]
  15. H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
    [CrossRef]
  16. L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
    [CrossRef]
  17. X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
    [CrossRef]
  18. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
    [CrossRef]
  19. R. C. Weast (Ed.), CRC Handbook of Chemistry and Physics, 64th ed. (CRC Press, Inc., Boca Raton, 1983), pp. D-257-258.
  20. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  21. R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006).
    [CrossRef] [PubMed]
  22. S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
    [CrossRef]

2008 (2)

V. Lirtsman, M. Golosovsky, and D. Davidov, "Infrared surface plasmon resonance technique for biological studies," J. Appl. Phys. 103, 014702 (2008).
[CrossRef]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

2006 (4)

R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006).
[CrossRef] [PubMed]

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

B. K. Singh and A. C. Hillier, "Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array," Anal. Chem. 78, 2009-2018 (2006).
[CrossRef] [PubMed]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

2005 (1)

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

2003 (1)

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
[CrossRef]

2001 (1)

H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
[CrossRef]

2000 (1)

R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Curr. Opin. Biotechnol. 11, 54-61 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1996 (4)

J. Homola and S. S. Yee, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis," Sens. Actuators B 37, 145-150 (1996).
[CrossRef]

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
[CrossRef]

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

1994 (1)

M. W. Foster, D. J. Ferrell, and R. A. Lieberman, "Surface plasmon resonance biosensor miniaturization," Proc. SPIE 2293, 122-131 (1994).
[CrossRef]

1993 (1)

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Alegret, S.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Alonso-Chamarro, J.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Barrett, E. M.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

Bartholomew, D. U.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Bradley, D. D. C.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

Bürgi, L.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Carr, R.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Cheung, A. C.

H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
[CrossRef]

Das, R.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

Davidov, D.

V. Lirtsman, M. Golosovsky, and D. Davidov, "Infrared surface plasmon resonance technique for biological studies," J. Appl. Phys. 103, 014702 (2008).
[CrossRef]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

de Mello, A. J.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

de Mello, J. C.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

Elkind, J.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Fan, X.

Ferrell, D. J.

M. W. Foster, D. J. Ferrell, and R. A. Lieberman, "Surface plasmon resonance biosensor miniaturization," Proc. SPIE 2293, 122-131 (1994).
[CrossRef]

Foster, M. W.

M. W. Foster, D. J. Ferrell, and R. A. Lieberman, "Surface plasmon resonance biosensor miniaturization," Proc. SPIE 2293, 122-131 (1994).
[CrossRef]

Franke, H.

M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
[CrossRef]

Furlong, C.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Garces, I.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Georgiadis, R.

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

Golosovsky, M.

V. Lirtsman, M. Golosovsky, and D. Davidov, "Infrared surface plasmon resonance technique for biological studies," J. Appl. Phys. 103, 014702 (2008).
[CrossRef]

Grattan, K. T. V.

M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
[CrossRef]

Hillier, A. C.

B. K. Singh and A. C. Hillier, "Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array," Anal. Chem. 78, 2009-2018 (2006).
[CrossRef] [PubMed]

Ho, H. P.

H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
[CrossRef]

Hofmann, O.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

Homola, J.

R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006).
[CrossRef] [PubMed]

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola and S. S. Yee, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis," Sens. Actuators B 37, 145-150 (1996).
[CrossRef]

Huang, J.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

Johnston, K. S.

S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
[CrossRef]

Jung, C. C.

S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
[CrossRef]

Karlsen, S. R.

S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
[CrossRef]

Kiy, M.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Kukanskis, K.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Leitz, M.

M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
[CrossRef]

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Lieberman, R. A.

M. W. Foster, D. J. Ferrell, and R. A. Lieberman, "Surface plasmon resonance biosensor miniaturization," Proc. SPIE 2293, 122-131 (1994).
[CrossRef]

Lirtsman, V.

V. Lirtsman, M. Golosovsky, and D. Davidov, "Infrared surface plasmon resonance technique for biological studies," J. Appl. Phys. 103, 014702 (2008).
[CrossRef]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

López, R.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Manuel, M.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Mateo, J.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Melendez, J.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Metzler, P.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Mücklich, M.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Myszka, D. G.

R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Curr. Opin. Biotechnol. 11, 54-61 (2000).
[CrossRef] [PubMed]

Peterlinz, K. A.

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

Pfeiffer, R.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Rich, R. L.

R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Curr. Opin. Biotechnol. 11, 54-61 (2000).
[CrossRef] [PubMed]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Singh, B. K.

B. K. Singh and A. C. Hillier, "Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array," Anal. Chem. 78, 2009-2018 (2006).
[CrossRef] [PubMed]

Slavík, R.

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Tamachkiarow, A.

M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
[CrossRef]

Vidal, B.

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Wang, X.

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

White, I. M.

Winnewisser, C.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Woodbury, R.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Wu, S. Y.

H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
[CrossRef]

Yang, M.

H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
[CrossRef]

Yee, S.

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola and S. S. Yee, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis," Sens. Actuators B 37, 145-150 (1996).
[CrossRef]

S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
[CrossRef]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Anal. Chem. (1)

B. K. Singh and A. C. Hillier, "Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array," Anal. Chem. 78, 2009-2018 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Curr. Opin. Biotechnol. 11, 54-61 (2000).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

V. Lirtsman, M. Golosovsky, and D. Davidov, "Infrared surface plasmon resonance technique for biological studies," J. Appl. Phys. 103, 014702 (2008).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

M. Leitz, A. Tamachkiarow, H. Franke, and K. T. V. Grattan, "Monitoring of biofilm growth using ATR-leaky mode spectroscopy," J. Phys. D: Appl. Phys. 35, 55-60 (2002).
[CrossRef]

Opt. Commun. (1)

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

Opt. Express (1)

Org. Electron. (1)

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, "Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs," Org. Electron. 7, 114-120 (2006).
[CrossRef]

Proc. SPIE (2)

X. Wang, O. Hofmann, J. Huang, E. M. Barrett, R. Das, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices," Proc. SPIE 6036, 60361O (2005).
[CrossRef]

M. W. Foster, D. J. Ferrell, and R. A. Lieberman, "Surface plasmon resonance biosensor miniaturization," Proc. SPIE 2293, 122-131 (1994).
[CrossRef]

Sens. Actuators B (6)

J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35-36, 212-216 (1996).
[CrossRef]

H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, "Application of white light-emitting diode to surface plasmon resonance sensors," Sens. Actuators B 80, 89-94 (2001).
[CrossRef]

M. Manuel, B. Vidal, R. López, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola and S. S. Yee, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis," Sens. Actuators B 37, 145-150 (1996).
[CrossRef]

S. R. Karlsen, K. S. Johnston, S. S. Yee, and C. C. Jung, "First-order surface plasmon resonance sensor system based on a planar light pipe," Sens. Actuators B 32, 137-141 (1996).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 2.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), Chap. 2-3.

R. C. Weast (Ed.), CRC Handbook of Chemistry and Physics, 64th ed. (CRC Press, Inc., Boca Raton, 1983), pp. D-257-258.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup: (a) for measurements in air an organic light emitting diode and a metallic sensor film are located on opposite sides of a glass prism which is mounted on a motorized rotation stage. The reflected light leaves through the edge of the prism and passes a linear polarizing filter before it is focused by a collimating lens onto an optical fiber guiding it to a spectrometer. (b) For measurements in aqueous environment the OLED and the metal film are attached to the edges of a trapezoidal plexiglass prism forming an angle of about 75 degrees towards the prism base.

Fig. 2.
Fig. 2.

OLED emission spectra normal to the substrate using three different organic emitters as described in the text.

Fig. 3.
Fig. 3.

Simulated p-polarized reflectivity of a glass/Ag/air interface for different silver thicknesses at a wavelength of 500 nm.

Fig. 4.
Fig. 4.

Measurement (left) and simulation (right) of the spectral and angular resolved p-polarized reflectivity of a 49 nm thick silver film exposed to air. Regions of low reflectivity indicate resonant coupling to the surface plasmon.

Fig. 5.
Fig. 5.

Measurement (left) and simulation (right) of the spectral and angular resolved ppolarized reflectivity of a 49 nm thick gold film exposed to air.

Fig. 6.
Fig. 6.

Measurement of the reflectivity change over time of a 48 nm Au film adjacent to a water reservoir at an incidence angle of approximately 74 degrees. Initially, the cuvette is empty, hence we measure the reflectivity of a Au/air interface and no SPR feature is observable at this angle. After five minutes water with a temperature of 25 °C was added. Five minutes later we started to heat and stir the water. This induces a shift of the minimum to smaller wavelengths with increasing temperature. After 40 minutes heating was stopped. The water cools down and the minimum moves back to higher wavelengths again

Fig. 7.
Fig. 7.

Extracted refractive index and temperature of water from the spectral position of the minimum in Fig. 6.

Fig. 8.
Fig. 8.

Wavelength and time dependent reflectivity of a Au/water interface at an incidence angle of approximately 76 degrees. The water reservoir is empty in the beginning. After five minutes we added 4.5 ml water. Five minutes later we added 0.5 g NaCl. The salt slowly dissolves and the spectral position of the minimum shifts to higher wavelengths. After 30 minutes we added 5 ml water which causes a dilution and the minimum moves back to lower wavelengths.

Fig. 9.
Fig. 9.

Extracted refractive index of water and salt concentration from the spectral position of the minimum in Fig. 8.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k x = ω c ε 1 ( ω ) ε 2 ε 1 ( ω ) + ε 2 .
sin φ = 1 n Substrate ε 1 ( ω ) ε 2 ε 1 ( ω ) + ε 2 = 1 n Substrate ε 1 ( λ ) ε 2 ε 1 ( λ ) + ε 2 .
n = 0.00177 c NaCl + 1.3329 ,

Metrics