Abstract

We use scanning fluorescence microscopy and electron beam lithography to probe the mechanism of fluorescence enhancement by periodic arrays of silver nanostructures, determining the optimum size and spacing of both Ag nanowires and Ag nanocolumns for incident light of different wavelengths and polarizations. Finite difference time domain (FDTD) calculations show a systematic variation with spatial period and incident polarization of the local electric field above the surface of the arrays which correlate well with that of the measured fluorescence enhancement, but a lack of a simple proportionality indicates that the dependence of the radiative and nonradiative decay rates on array geometry must be included in models for this effect. The dependence of the enhancement on spatial period and polarization indicates the importance of surface plasmon standing waves in this effect.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  2. M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman-spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977).
    [CrossRef]
  3. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
    [CrossRef]
  4. J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003).
    [CrossRef] [PubMed]
  5. N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
    [CrossRef]
  6. P. J. Tarcha, J. DeSaja-Gonzalez, S. Rodriguez-Llorente, and R. Aroca, "Surface-enhanced fluorescence on SiO2-coated silver island films," Appl. Spectrosc. 53, 43-48 (1999).
    [CrossRef]
  7. T.-H. Wang, S. Masset, and C.-M. Ho, "A zepto mole DNA micro sensor," in Micro Electro Mechanical Systems, 2001. The 14th IEEE International Conference on MEMS., (IEEE, 2001), 431-434.
  8. J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
    [CrossRef] [PubMed]
  9. U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987).
    [CrossRef]
  10. J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
    [CrossRef] [PubMed]
  11. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
    [CrossRef] [PubMed]
  12. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloid Surf. A-Physicochem.Eng. Asp. 171, 115-130 (2000).
    [CrossRef]
  13. K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
    [CrossRef] [PubMed]
  14. F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003).
    [CrossRef] [PubMed]
  15. D. R. Matthews, H. D. Summers, K. Njoh, S. Chappell, R. Errington, and P. Smith, "Optical antenna arrays in the visible range," Opt. Express 15, 3478-3487 (2007).
    [CrossRef] [PubMed]
  16. S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
    [CrossRef]
  17. T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
    [CrossRef] [PubMed]
  18. T. Pistor, "Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program," UCB/ERL M97/52 (EECS Department, UC Berkeley, Berkeley, 1997).
  19. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
    [CrossRef]
  20. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
    [CrossRef] [PubMed]
  21. A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  22. A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
    [CrossRef]
  23. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
    [CrossRef]
  24. A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
    [CrossRef] [PubMed]
  25. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
    [CrossRef]

2008 (3)

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

2007 (2)

D. R. Matthews, H. D. Summers, K. Njoh, S. Chappell, R. Errington, and P. Smith, "Optical antenna arrays in the visible range," Opt. Express 15, 3478-3487 (2007).
[CrossRef] [PubMed]

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

2005 (1)

T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
[CrossRef] [PubMed]

2003 (7)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003).
[CrossRef] [PubMed]

2001 (3)

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

2000 (1)

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloid Surf. A-Physicochem.Eng. Asp. 171, 115-130 (2000).
[CrossRef]

1999 (1)

1998 (1)

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

1987 (1)

U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987).
[CrossRef]

1977 (2)

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman-spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

1965 (1)

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman-spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977).
[CrossRef]

Aroca, R.

Aubard, J.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Aussenegg, F. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Bauer, G.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

Breuer, H. D.

U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987).
[CrossRef]

Cao, H.

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Cao, Y. W.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Chappell, S.

Cho, Y.-J.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Chumanov, G.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Corrigan, T. D.

T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
[CrossRef] [PubMed]

Cotton, T. M.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman-spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977).
[CrossRef]

Darmanyan, S. A.

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

DeSaja-Gonzalez, J.

Errington, R.

Fang, J. Y.

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Felidj, N.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Fu, J.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Gandhum, A.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

Geddes, C. D.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Gerber, S.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Gryczynski, I.

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Guo, S.

T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
[CrossRef] [PubMed]

Guo, S. H.

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

Hessel, A.

Hohenau, A.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Hohenester, U.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Jin, R. C.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Jones, L.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Kan, H. C.

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Knoll, W.

F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003).
[CrossRef] [PubMed]

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloid Surf. A-Physicochem.Eng. Asp. 171, 115-130 (2000).
[CrossRef]

Kobyakov, A.

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

Kreibig, U.

U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987).
[CrossRef]

Krenn, J. R.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

Leitner, A.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Levi, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloid Surf. A-Physicochem.Eng. Asp. 171, 115-130 (2000).
[CrossRef]

Mafi, A.

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

Malicka, J.

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003).
[CrossRef] [PubMed]

Matthews, D. R.

Matushin, V.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

Mayer, C.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

Mirkin, C. A.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Njoh, K.

Oliner, A. A.

Parfenov, A.

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

Park, B.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Phaneuf, R. J.

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
[CrossRef] [PubMed]

Pistor, T.

T. Pistor, "Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program," UCB/ERL M97/52 (EECS Department, UC Berkeley, Berkeley, 1997).

Reil, F.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Rodriguez-Llorente, S.

Schalkhammer, T.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Schlagenhaufen, T.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Schmitz, B.

U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987).
[CrossRef]

Siragusa, G.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Smith, P.

Sokolov, K.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

Sparks, K. B.

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

Stich, N.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

Summers, H. D.

Szmacinski, H.

T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
[CrossRef] [PubMed]

Tarcha, P. J.

Tripp, R.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Tsai, D. H.

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

Tsai, S. J.

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Yao, D. F.

F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003).
[CrossRef] [PubMed]

Yu, F.

F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003).
[CrossRef] [PubMed]

Zachariah, M. R.

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

Zakharian, A. R.

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Zhao, Y.

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Zheng, J. G.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

Anal. Chem. (3)

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Appl. Spectrosc. (1)

Eng. Asp. (1)

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloid Surf. A-Physicochem.Eng. Asp. 171, 115-130 (2000).
[CrossRef]

J. Am. Chem. Soc. (1)

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman-spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

J. Fluoresc. (1)

T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005).
[CrossRef] [PubMed]

J. Nanosci. Nanotechnol. (1)

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001).
[CrossRef]

J. Phys. Chem. A (1)

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

J. Phys. Chem. B (2)

A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

J. Phys. D-Appl. Phys (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. (1)

A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008).
[CrossRef]

Phys. Rev. B (2)

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987).
[CrossRef]

Science (1)

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
[CrossRef] [PubMed]

Other (2)

T.-H. Wang, S. Masset, and C.-M. Ho, "A zepto mole DNA micro sensor," in Micro Electro Mechanical Systems, 2001. The 14th IEEE International Conference on MEMS., (IEEE, 2001), 431-434.

T. Pistor, "Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program," UCB/ERL M97/52 (EECS Department, UC Berkeley, Berkeley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scanning electron microscope image with enlargements of select areas shown to the left (a1–a4). (b) Reflectance image with incident light of 514 nm. (c) Cy3 fluorescence map. (d–e) Quantitative analysis of fluorescence enhancement (blue) and reflectance intensity (red) along two different orientations of excitation. The period is defined as the line width plus edge-to-edge spacing, and in this case line width equals edge-to-edge spacing. Chosen line widths vary by 1/8 the wavelength of the excitation light, for both wavelengths used (514 nm for the top half, and 633 nm for the bottom half). Line widths in the top two rows are 64 nm, 128 nm, 192 nm, etc. up to 514 nm, and in the bottom rows are 79 nm, 158 nm, 237 nm, etc. up to 633 nm for the largest square. Each half consists of longitudinal and transverse orientations plus a single vertical line. The “LPS” marks consist of arrays of silver nanodots with edge lengths of 120 nm and center-to-center spacings of 220 nm. For transverse excitation polarization, there is an inverse correlation between reflectance measurements and fluorescence enhancement; when reflectance is lowest, fluorescence intensity is highest. Error bars represent the standard deviation for several measurements of different samples.

Fig. 2.
Fig. 2.

(a) Scanning electron microscope image with enlargements of select areas to the left (a1–a4), highlighting the structure of the smallest square silver nanoparticles arrays. (b) Reflectance image with 514 nm incident light, and (c) the corresponding Cy3 fluorescence map. (d) Quantitative analysis of the fluorescence enhancement (blue) and reflectance intensity (red) for increasing nanoparticle size and spacing. Particle edge lengths and center-to-center distances are the same as the bar widths and spacings in figure 1. The “LPS” mark consists of arrays of 120 nm silver nanodots with a period of 220 nm. Error bars represent the standard deviation for several measurements of different samples.

Fig. 3.
Fig. 3.

Field intensity calculation by two-dimensional FDTD method and examples are as shown in (a-e). The long axis of the nanobars is normal to the image plane; this is an end-on view of the long structures positioned on a silicon substrate, with a layer of aluminum oxide between the substrate and the silver bars, and water filling the top portion of the frame. Bright areas show the positions of high local electric field. (f, g) Summary plots show the average electric field intensity 8 nm above the surface (at the location of the green dashed lines in (a–e)), compared with fluorescence enhancement along two different polarizations. Excitation polarization compared to bar orientation is indicated by the illustrations within the graphs. Intensity plots (a–e) represent the visualization of calculations for points noted by the labels within graphs (f–g), at periods of 316, 1028, 316, 512, and 1028 nm, respectively. Error bars represent the standard deviation for several measurements of different samples.

Fig. 4.
Fig. 4.

Overall summary of Cy5 fluorophore; compare to fig. 1 results for Cy3: (a) reflectance and (b) fluorescence images on nanostructures with the same dimensions as in Figure 1. Graphs show the summary analysis along the transverse mode between fluorescence and (c) reflectance, or (d) calculated average field intensity 8nm above sample surface. Error bars represent the standard deviation for several measurements of different samples. There is good correlation between fluorescence and field intensity, and an inverse correlation between fluorescence and reflectance, for this transverse excitation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N I e I B I f I B ,
k = ± ω c ε Ag ε w ε Ag + ε w ,
k W m π ,

Metrics