M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, “The phase retrieval problem,” Inverse Probl. 11, 1–28 (1995).

[Crossref]

R. E. Burge, M. A. Fiddy, A. H. Greenaway, and G. Ross, “The Phase Problem,” Proc. R. Soc. Lond. A 350, 191–212 (1976).

[Crossref]

H. M. Nussenzveig, “Phase problem in coherence theory,” J. Math. Phys. 8, 561–572 (1967).

[Crossref]

R. E. Burge, M. A. Fiddy, A. H. Greenaway, and G. Ross, “The Phase Problem,” Proc. R. Soc. Lond. A 350, 191–212 (1976).

[Crossref]

R. E. Burge, M. A. Fiddy, A. H. Greenaway, and G. Ross, “The Phase Problem,” Proc. R. Soc. Lond. A 350, 191–212 (1976).

[Crossref]

R. E. Burge, M. A. Fiddy, A. H. Greenaway, and G. Ross, “The Phase Problem,” Proc. R. Soc. Lond. A 350, 191–212 (1976).

[Crossref]

M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, “The phase retrieval problem,” Inverse Probl. 11, 1–28 (1995).

[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995), p. 384.

H. M. Nussenzveig, “Phase problem in coherence theory,” J. Math. Phys. 8, 561–572 (1967).

[Crossref]

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Prentice-Hall, Englewood Cliffs, NJ, 1989), p. 662.

J. Perina, Coherence of Light, 2nd ed. (Kluwer Ac. Pub., Dordrecht, 1985), p. 46.

R. E. Burge, M. A. Fiddy, A. H. Greenaway, and G. Ross, “The Phase Problem,” Proc. R. Soc. Lond. A 350, 191–212 (1976).

[Crossref]

M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, “The phase retrieval problem,” Inverse Probl. 11, 1–28 (1995).

[Crossref]

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Prentice-Hall, Englewood Cliffs, NJ, 1989), p. 662.

R.A. Silverman, Introductory Complex Analysis (Dover, New York, 1985), p. 262.

M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, “The phase retrieval problem,” Inverse Probl. 11, 1–28 (1995).

[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995), p. 384.

M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, “The phase retrieval problem,” Inverse Probl. 11, 1–28 (1995).

[Crossref]

H. M. Nussenzveig, “Phase problem in coherence theory,” J. Math. Phys. 8, 561–572 (1967).

[Crossref]

R. E. Burge, M. A. Fiddy, A. H. Greenaway, and G. Ross, “The Phase Problem,” Proc. R. Soc. Lond. A 350, 191–212 (1976).

[Crossref]

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Prentice-Hall, Englewood Cliffs, NJ, 1989), p. 662.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995), p. 384.

J. Perina, Coherence of Light, 2nd ed. (Kluwer Ac. Pub., Dordrecht, 1985), p. 46.

R.A. Silverman, Introductory Complex Analysis (Dover, New York, 1985), p. 262.

Here we follow the usual Fourier convention exp(-iω t) for the temporal complex oscillation from the physics literature [1, 2]. It is the opposite to that of signal theory, which is the natural for interpreting the experimental radio-frequency measurements [5].

For a reference at νa, the contour should have been completed in the lhp, resulting in a change of sign in the Hilbert phase. The Blaschke zeros would have been located in the lhp and the curves γa(τ), corresponding to those shown in Figs. 6 and 7, would then be clockwise.