Abstract

For the first time to our knowledge, thermal laser-induced gratings (LIGs), generated via two-photon stimulated Raman excitation of pure rotational (and low-lying vibrational) transitions in molecules employing broadband radiation of a single pump laser, are observed. The efficiency of LIGs excitation using a few ns pulse duration dye laser with the spectral width of about 400 cm-1, which covers the frequency range of the characteristic rotational transitions, is experimentally investigated in a number of molecular gases (N2, CO2, C3H8) at room temperature and pressures of 0.1–5 bar. The physical mechanisms of LIG formation are discussed and comparison of the shapes of the LIG signals obtained in different gases is presented in relation to the spectra of rotational and vibrational energies of the molecules under study, as well as to the selection rules for Raman transitions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, 1986).
  2. A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
    [CrossRef]
  3. R. Stevens and P. Ewart, "Single-shot measurement of temperature and pressure using laser-induced thermal gratings with a long probe pulse" Appl. Phys. B 78, 111-117 (2004).
    [CrossRef]
  4. S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
    [CrossRef]
  5. R. Stevens and P. Ewart, "Simultaneous single-shot measurement of temperature and pressure along a one-dimensional line by use of laser-induced thermal grating spectroscopy" Opt. Lett. 31, 1055-1057 (2006).
    [CrossRef] [PubMed]
  6. T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, "Time resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings" Opt. Express 14, 12994-13000 (2006).
    [CrossRef] [PubMed]
  7. R. C. Hart, G. C. Herring, and R. J. Balla, "Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics" Opt. Lett. 32, 1689-1691 (2007).
    [CrossRef] [PubMed]
  8. J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
    [CrossRef]
  9. D. N. Kozlov and P. P. Radi, "Detection of vibrational overtone excitation in methane by laser-induced grating spectroscopy" J. Raman Spectrosc. 39730-738 (2008).
    [CrossRef]
  10. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 1992).
  11. Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
    [CrossRef]
  12. T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2" J. Chem. Phys. 98, 5460-5468 (1993).
    [CrossRef]
  13. E. B. Cummings, "Laser-induced thermal acoustics: simple accurate gas measurements" Opt. Lett. 19, 1361-1363 (1994).
    [CrossRef] [PubMed]
  14. E. B. Cummings, H. G. Hornung, M. S. Brown, and P. A. DeBarber, "Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics" Opt. Lett. 20, 1577-1579 (1995).
    [CrossRef] [PubMed]
  15. R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
    [CrossRef]
  16. Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).
  17. E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
    [CrossRef]
  18. Q5. P. H. Paul, R. L. Farrow, and P. M. Danehy, "Gas-phase thermal-grating contribution to four-wave mixing" JOSA B 12, 384-392 (1995).
    [CrossRef]
  19. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, "Laser-induced thermal grating effects in flames" Opt. Lett. 19, 1681-1683 (1994).
    [CrossRef] [PubMed]
  20. B. Hemmerling, R. Bombach, and W. Hubschmid, "Laser-induced gratings in oxygen excited via the b1Σ+g(v'=0) state" Chem. Phys. Lett. 256, 71-76 (1996).
    [CrossRef]
  21. W. Hubschmid and B. Hemmerling, "Relaxation processes in singlet O2 analyzed by laser-induced gratings" Chem. Phys. 259, 109-120 (2000).
    [CrossRef]
  22. B. Hemmerling and D.N. Kozlov, "Collisional relaxation of singlet O2 (b 1Σ+g) in neat gas investigated by laser-induced grating technique" Chem. Phys. 291, 213-242 (2003).
    [CrossRef]
  23. M. A. Buntine, D. W. Chandler, and C. C. Hayden, "Detection of vibrational-overtone excitation in water via laser-induced grating spectroscopy" J. Chem. Phys. 102, 2718-2726 (1995).
    [CrossRef]
  24. J. A. Booze, D. E. Govoni, and F. F. Crim, "Diffraction mechanisms in gas-phase laser induced grating spectroscopy of vibrational overtone transitions" J. Chem. Phys. 103, 10484-10491 (1995).
    [CrossRef]
  25. R. C. Hart, R. J. Balla, and G. C. Herring, "Observation of H2O in a flame by two-colour laser-induced-grating spectroscopy" Meas. Sci. Technol. 8, 917-920 (1997).
    [CrossRef]
  26. B. Hemmerling, D. N. Kozlov, M. Stel'makh, and B. Attal-Trétout, "Diagnostics of water-containing gas mixtures using thermal laser-induced gratings" Chem. Phys. 320, 103-117 (2006).
    [CrossRef]
  27. M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
    [CrossRef]
  28. A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).
  29. D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Laser-induced gratings in the gas phase excited by Raman-active transitions" Opt. Lett. 22, 46-48 (1997).
    [CrossRef] [PubMed]
  30. D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
    [CrossRef]
  31. Q6. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, "Rayleigh and Brillouin modes in electrostrictive gratings" JOSA B 12, 1850-1854 (1995).
    [CrossRef]
  32. C. M. Roland and W. A. Steele, "Intensities in pure rotational CARS of air" J. Chem. Phys. 73, 5919-5923 (1980).
    [CrossRef]
  33. Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
    [CrossRef]
  34. F. Lepoutre, G. Louis, and H. Manceau, "Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method" Chem. Phys. Lett. 48, 509-514 (1977).
    [CrossRef]
  35. http://srdata.nist.gov/cccbdb/.

2008 (3)

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
[CrossRef]

D. N. Kozlov and P. P. Radi, "Detection of vibrational overtone excitation in methane by laser-induced grating spectroscopy" J. Raman Spectrosc. 39730-738 (2008).
[CrossRef]

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

2007 (1)

2006 (3)

2005 (2)

A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
[CrossRef]

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

2004 (1)

R. Stevens and P. Ewart, "Single-shot measurement of temperature and pressure using laser-induced thermal gratings with a long probe pulse" Appl. Phys. B 78, 111-117 (2004).
[CrossRef]

2003 (1)

B. Hemmerling and D.N. Kozlov, "Collisional relaxation of singlet O2 (b 1Σ+g) in neat gas investigated by laser-induced grating technique" Chem. Phys. 291, 213-242 (2003).
[CrossRef]

2001 (1)

Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).

2000 (3)

R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
[CrossRef]

M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
[CrossRef]

W. Hubschmid and B. Hemmerling, "Relaxation processes in singlet O2 analyzed by laser-induced gratings" Chem. Phys. 259, 109-120 (2000).
[CrossRef]

1999 (1)

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
[CrossRef]

1997 (2)

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Laser-induced gratings in the gas phase excited by Raman-active transitions" Opt. Lett. 22, 46-48 (1997).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, and G. C. Herring, "Observation of H2O in a flame by two-colour laser-induced-grating spectroscopy" Meas. Sci. Technol. 8, 917-920 (1997).
[CrossRef]

1996 (2)

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

B. Hemmerling, R. Bombach, and W. Hubschmid, "Laser-induced gratings in oxygen excited via the b1Σ+g(v'=0) state" Chem. Phys. Lett. 256, 71-76 (1996).
[CrossRef]

1995 (5)

M. A. Buntine, D. W. Chandler, and C. C. Hayden, "Detection of vibrational-overtone excitation in water via laser-induced grating spectroscopy" J. Chem. Phys. 102, 2718-2726 (1995).
[CrossRef]

J. A. Booze, D. E. Govoni, and F. F. Crim, "Diffraction mechanisms in gas-phase laser induced grating spectroscopy of vibrational overtone transitions" J. Chem. Phys. 103, 10484-10491 (1995).
[CrossRef]

Q6. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, "Rayleigh and Brillouin modes in electrostrictive gratings" JOSA B 12, 1850-1854 (1995).
[CrossRef]

Q5. P. H. Paul, R. L. Farrow, and P. M. Danehy, "Gas-phase thermal-grating contribution to four-wave mixing" JOSA B 12, 384-392 (1995).
[CrossRef]

E. B. Cummings, H. G. Hornung, M. S. Brown, and P. A. DeBarber, "Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics" Opt. Lett. 20, 1577-1579 (1995).
[CrossRef] [PubMed]

1994 (2)

1993 (2)

E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
[CrossRef]

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2" J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

1980 (1)

C. M. Roland and W. A. Steele, "Intensities in pure rotational CARS of air" J. Chem. Phys. 73, 5919-5923 (1980).
[CrossRef]

1977 (1)

F. Lepoutre, G. Louis, and H. Manceau, "Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method" Chem. Phys. Lett. 48, 509-514 (1977).
[CrossRef]

1973 (1)

Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
[CrossRef]

Aldèn, M.

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

Attal-Trétout, B.

B. Hemmerling, D. N. Kozlov, M. Stel'makh, and B. Attal-Trétout, "Diagnostics of water-containing gas mixtures using thermal laser-induced gratings" Chem. Phys. 320, 103-117 (2006).
[CrossRef]

Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).

Balla, R. J.

R. C. Hart, G. C. Herring, and R. J. Balla, "Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics" Opt. Lett. 32, 1689-1691 (2007).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, and G. C. Herring, "Observation of H2O in a flame by two-colour laser-induced-grating spectroscopy" Meas. Sci. Technol. 8, 917-920 (1997).
[CrossRef]

Bombach, R.

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Laser-induced gratings in the gas phase excited by Raman-active transitions" Opt. Lett. 22, 46-48 (1997).
[CrossRef] [PubMed]

B. Hemmerling, R. Bombach, and W. Hubschmid, "Laser-induced gratings in oxygen excited via the b1Σ+g(v'=0) state" Chem. Phys. Lett. 256, 71-76 (1996).
[CrossRef]

Booze, J. A.

J. A. Booze, D. E. Govoni, and F. F. Crim, "Diffraction mechanisms in gas-phase laser induced grating spectroscopy of vibrational overtone transitions" J. Chem. Phys. 103, 10484-10491 (1995).
[CrossRef]

Brown, M. S.

Buntine, M. A.

M. A. Buntine, D. W. Chandler, and C. C. Hayden, "Detection of vibrational-overtone excitation in water via laser-induced grating spectroscopy" J. Chem. Phys. 102, 2718-2726 (1995).
[CrossRef]

Butenhoff, T. J.

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2" J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

Chandler, D. W.

M. A. Buntine, D. W. Chandler, and C. C. Hayden, "Detection of vibrational-overtone excitation in water via laser-induced grating spectroscopy" J. Chem. Phys. 102, 2718-2726 (1995).
[CrossRef]

Crim, F. F.

J. A. Booze, D. E. Govoni, and F. F. Crim, "Diffraction mechanisms in gas-phase laser induced grating spectroscopy of vibrational overtone transitions" J. Chem. Phys. 103, 10484-10491 (1995).
[CrossRef]

Cummings, E. B.

Danehy, P. M.

M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
[CrossRef]

Q5. P. H. Paul, R. L. Farrow, and P. M. Danehy, "Gas-phase thermal-grating contribution to four-wave mixing" JOSA B 12, 384-392 (1995).
[CrossRef]

De Dominicis, L.

R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
[CrossRef]

DeBarber, P. A.

Dehmer, J. L.

E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
[CrossRef]

Dehmer, P. M.

E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
[CrossRef]

Dreier, T.

M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
[CrossRef]

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

Dreizler, A.

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

Ewart, P.

R. Stevens and P. Ewart, "Simultaneous single-shot measurement of temperature and pressure along a one-dimensional line by use of laser-induced thermal grating spectroscopy" Opt. Lett. 31, 1055-1057 (2006).
[CrossRef] [PubMed]

R. Stevens and P. Ewart, "Single-shot measurement of temperature and pressure using laser-induced thermal gratings with a long probe pulse" Appl. Phys. B 78, 111-117 (2004).
[CrossRef]

Fantoni, R.

R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
[CrossRef]

Farrow, R. L.

Q5. P. H. Paul, R. L. Farrow, and P. M. Danehy, "Gas-phase thermal-grating contribution to four-wave mixing" JOSA B 12, 384-392 (1995).
[CrossRef]

Fenner, W. R.

Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
[CrossRef]

Forsman, J. W.

Giorgi, M.

R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
[CrossRef]

Govoni, D. E.

J. A. Booze, D. E. Govoni, and F. F. Crim, "Diffraction mechanisms in gas-phase laser induced grating spectroscopy of vibrational overtone transitions" J. Chem. Phys. 103, 10484-10491 (1995).
[CrossRef]

Gutfleisch, M.

M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
[CrossRef]

Hart, R. C.

R. C. Hart, G. C. Herring, and R. J. Balla, "Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics" Opt. Lett. 32, 1689-1691 (2007).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, and G. C. Herring, "Observation of H2O in a flame by two-colour laser-induced-grating spectroscopy" Meas. Sci. Technol. 8, 917-920 (1997).
[CrossRef]

Hayden, C. C.

M. A. Buntine, D. W. Chandler, and C. C. Hayden, "Detection of vibrational-overtone excitation in water via laser-induced grating spectroscopy" J. Chem. Phys. 102, 2718-2726 (1995).
[CrossRef]

Hemmerling, B.

B. Hemmerling, D. N. Kozlov, M. Stel'makh, and B. Attal-Trétout, "Diagnostics of water-containing gas mixtures using thermal laser-induced gratings" Chem. Phys. 320, 103-117 (2006).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
[CrossRef]

B. Hemmerling and D.N. Kozlov, "Collisional relaxation of singlet O2 (b 1Σ+g) in neat gas investigated by laser-induced grating technique" Chem. Phys. 291, 213-242 (2003).
[CrossRef]

W. Hubschmid and B. Hemmerling, "Relaxation processes in singlet O2 analyzed by laser-induced gratings" Chem. Phys. 259, 109-120 (2000).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Laser-induced gratings in the gas phase excited by Raman-active transitions" Opt. Lett. 22, 46-48 (1997).
[CrossRef] [PubMed]

B. Hemmerling, R. Bombach, and W. Hubschmid, "Laser-induced gratings in oxygen excited via the b1Σ+g(v'=0) state" Chem. Phys. Lett. 256, 71-76 (1996).
[CrossRef]

Q6. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, "Rayleigh and Brillouin modes in electrostrictive gratings" JOSA B 12, 1850-1854 (1995).
[CrossRef]

Herring, G. C.

R. C. Hart, G. C. Herring, and R. J. Balla, "Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics" Opt. Lett. 32, 1689-1691 (2007).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, and G. C. Herring, "Observation of H2O in a flame by two-colour laser-induced-grating spectroscopy" Meas. Sci. Technol. 8, 917-920 (1997).
[CrossRef]

Hornung, H. G.

Hubschmid, W.

W. Hubschmid and B. Hemmerling, "Relaxation processes in singlet O2 analyzed by laser-induced gratings" Chem. Phys. 259, 109-120 (2000).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Laser-induced gratings in the gas phase excited by Raman-active transitions" Opt. Lett. 22, 46-48 (1997).
[CrossRef] [PubMed]

B. Hemmerling, R. Bombach, and W. Hubschmid, "Laser-induced gratings in oxygen excited via the b1Σ+g(v'=0) state" Chem. Phys. Lett. 256, 71-76 (1996).
[CrossRef]

Q6. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, "Rayleigh and Brillouin modes in electrostrictive gratings" JOSA B 12, 1850-1854 (1995).
[CrossRef]

Hyatt, H. A.

Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
[CrossRef]

Kasal, P.

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

Kellam, J. M.

Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
[CrossRef]

Kiefer, J.

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
[CrossRef]

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, "Time resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings" Opt. Express 14, 12994-13000 (2006).
[CrossRef] [PubMed]

Koch, A.

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

Kozlov, D.

Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).

Kozlov, D. N.

D. N. Kozlov and P. P. Radi, "Detection of vibrational overtone excitation in methane by laser-induced grating spectroscopy" J. Raman Spectrosc. 39730-738 (2008).
[CrossRef]

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
[CrossRef]

T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, "Time resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings" Opt. Express 14, 12994-13000 (2006).
[CrossRef] [PubMed]

B. Hemmerling, D. N. Kozlov, M. Stel'makh, and B. Attal-Trétout, "Diagnostics of water-containing gas mixtures using thermal laser-induced gratings" Chem. Phys. 320, 103-117 (2006).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
[CrossRef]

R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
[CrossRef]

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Laser-induced gratings in the gas phase excited by Raman-active transitions" Opt. Lett. 22, 46-48 (1997).
[CrossRef] [PubMed]

Kozlov, D.N.

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

B. Hemmerling and D.N. Kozlov, "Collisional relaxation of singlet O2 (b 1Σ+g) in neat gas investigated by laser-induced grating technique" Chem. Phys. 291, 213-242 (2003).
[CrossRef]

Latzel, H.

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

Le Boiteux, S.

Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).

Leipertz, A.

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
[CrossRef]

T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, "Time resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings" Opt. Express 14, 12994-13000 (2006).
[CrossRef] [PubMed]

Lepoutre, F.

F. Lepoutre, G. Louis, and H. Manceau, "Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method" Chem. Phys. Lett. 48, 509-514 (1977).
[CrossRef]

Li, B.

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

Li, Z. S.

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

Loubignac, E.

Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).

Louis, G.

F. Lepoutre, G. Louis, and H. Manceau, "Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method" Chem. Phys. Lett. 48, 509-514 (1977).
[CrossRef]

Manceau, H.

F. Lepoutre, G. Louis, and H. Manceau, "Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method" Chem. Phys. Lett. 48, 509-514 (1977).
[CrossRef]

McCormack, E. F.

E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
[CrossRef]

Paul, P. H.

Q5. P. H. Paul, R. L. Farrow, and P. M. Danehy, "Gas-phase thermal-grating contribution to four-wave mixing" JOSA B 12, 384-392 (1995).
[CrossRef]

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, "Laser-induced thermal grating effects in flames" Opt. Lett. 19, 1681-1683 (1994).
[CrossRef] [PubMed]

Porto, S. P. S.

Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
[CrossRef]

Pratt, S. T.

E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
[CrossRef]

Radi, P. P

A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
[CrossRef]

Radi, P. P.

D. N. Kozlov and P. P. Radi, "Detection of vibrational overtone excitation in methane by laser-induced grating spectroscopy" J. Raman Spectrosc. 39730-738 (2008).
[CrossRef]

Rahn, L. A.

Rakut, C.

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

Rohlfing, E. A.

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2" J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

Roland, C. M.

C. M. Roland and W. A. Steele, "Intensities in pure rotational CARS of air" J. Chem. Phys. 73, 5919-5923 (1980).
[CrossRef]

Rosgen, T.

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

Schlamp, S.

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

Seeger, T.

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
[CrossRef]

T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, "Time resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings" Opt. Express 14, 12994-13000 (2006).
[CrossRef] [PubMed]

Shin, D. I.

M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
[CrossRef]

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
[CrossRef]

Q6. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, "Rayleigh and Brillouin modes in electrostrictive gratings" JOSA B 12, 1850-1854 (1995).
[CrossRef]

Steele, W.A.

C. M. Roland and W. A. Steele, "Intensities in pure rotational CARS of air" J. Chem. Phys. 73, 5919-5923 (1980).
[CrossRef]

Stel'makh, M.

B. Hemmerling, D. N. Kozlov, M. Stel'makh, and B. Attal-Trétout, "Diagnostics of water-containing gas mixtures using thermal laser-induced gratings" Chem. Phys. 320, 103-117 (2006).
[CrossRef]

Stevens, R.

R. Stevens and P. Ewart, "Simultaneous single-shot measurement of temperature and pressure along a one-dimensional line by use of laser-induced thermal grating spectroscopy" Opt. Lett. 31, 1055-1057 (2006).
[CrossRef] [PubMed]

R. Stevens and P. Ewart, "Single-shot measurement of temperature and pressure using laser-induced thermal gratings with a long probe pulse" Appl. Phys. B 78, 111-117 (2004).
[CrossRef]

Sun, Z. W.

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

von Wolfersdorf, J.

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

Weikl, M. C.

Williams, S.

Wolfrum, J.

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

Zare, R. N.

Appl. Phys. B (4)

A. Stampanoni-Panariello, D. N. Kozlov, P. P Radi, and B. Hemmerling, "Gas phase diagnostics by laser-induced gratings. I. Theory, II. Experiments" Appl. Phys. B 81, 101-111, 113-129 (2005), and references therein.
[CrossRef]

R. Stevens and P. Ewart, "Single-shot measurement of temperature and pressure using laser-induced thermal gratings with a long probe pulse" Appl. Phys. B 78, 111-117 (2004).
[CrossRef]

Z. W. Sun, J. Kiefer, Z. S. Li, B. Li, and M. Aldèn, "Four wave mixing with non-resonant pump and resonant probe for OH detection in flames" Appl. Phys. B 92, 287-293 (2008).
[CrossRef]

M. Gutfleisch, D. I. Shin, T. Dreier, and P. M. Danehy, "Mid-infrared laser-induced grating experiments of C2H4 and NH3 from 0.1-2 MPa and 300-800 K" Appl. Phys. B 71, 673-680 (2000).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

A. Dreizler, H. Latzel, T. Dreier, A. Koch, and J. Wolfrum, "Thermal contributions in infrared laser-induced grating experiments at high pressure" Ber. Bunsenges. Phys. Chem. 100, 1678-1683 (1996).

Chem. Phys. (3)

W. Hubschmid and B. Hemmerling, "Relaxation processes in singlet O2 analyzed by laser-induced gratings" Chem. Phys. 259, 109-120 (2000).
[CrossRef]

B. Hemmerling and D.N. Kozlov, "Collisional relaxation of singlet O2 (b 1Σ+g) in neat gas investigated by laser-induced grating technique" Chem. Phys. 291, 213-242 (2003).
[CrossRef]

B. Hemmerling, D. N. Kozlov, M. Stel'makh, and B. Attal-Trétout, "Diagnostics of water-containing gas mixtures using thermal laser-induced gratings" Chem. Phys. 320, 103-117 (2006).
[CrossRef]

Chem. Phys. Lett. (4)

F. Lepoutre, G. Louis, and H. Manceau, "Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method" Chem. Phys. Lett. 48, 509-514 (1977).
[CrossRef]

B. Hemmerling, R. Bombach, and W. Hubschmid, "Laser-induced gratings in oxygen excited via the b1Σ+g(v'=0) state" Chem. Phys. Lett. 256, 71-76 (1996).
[CrossRef]

R. Fantoni, M. Giorgi, L. De Dominicis, and D. N. Kozlov, "Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser induced thermal grating technique" Chem. Phys. Lett. 332, 375-380 (2000).
[CrossRef]

E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, "Double-resonance laser-induced grating spectroscopy of nitric oxide" Chem. Phys. Lett. 211, 147-155 (1993).
[CrossRef]

J. Chem. Phys. (4)

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2" J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

M. A. Buntine, D. W. Chandler, and C. C. Hayden, "Detection of vibrational-overtone excitation in water via laser-induced grating spectroscopy" J. Chem. Phys. 102, 2718-2726 (1995).
[CrossRef]

J. A. Booze, D. E. Govoni, and F. F. Crim, "Diffraction mechanisms in gas-phase laser induced grating spectroscopy of vibrational overtone transitions" J. Chem. Phys. 103, 10484-10491 (1995).
[CrossRef]

C. M. Roland and W. A. Steele, "Intensities in pure rotational CARS of air" J. Chem. Phys. 73, 5919-5923 (1980).
[CrossRef]

J. Propul. Power (1)

S. Schlamp, T. Rosgen, D.N. Kozlov, C. Rakut, P. Kasal, and J. von Wolfersdorf, "Transient grating spectroscopy in a hot turbulent compressible free jet" J. Propul. Power 21, 1008-1018 (2005).
[CrossRef]

J. Raman Spectrosc. (2)

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, "Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering" J. Raman Spectrosc. 39711-721 (2008).
[CrossRef]

D. N. Kozlov and P. P. Radi, "Detection of vibrational overtone excitation in methane by laser-induced grating spectroscopy" J. Raman Spectrosc. 39730-738 (2008).
[CrossRef]

JOSA (1)

Q7. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross-section of some simple gases" JOSA 63, 73-77 (1973).
[CrossRef]

JOSA B (2)

Q6. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, "Rayleigh and Brillouin modes in electrostrictive gratings" JOSA B 12, 1850-1854 (1995).
[CrossRef]

Q5. P. H. Paul, R. L. Farrow, and P. M. Danehy, "Gas-phase thermal-grating contribution to four-wave mixing" JOSA B 12, 384-392 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

R. C. Hart, R. J. Balla, and G. C. Herring, "Observation of H2O in a flame by two-colour laser-induced-grating spectroscopy" Meas. Sci. Technol. 8, 917-920 (1997).
[CrossRef]

Opt. Commun. (1)

D. N. Kozlov, R. Bombach, B. Hemmerling, and W. Hubschmid, "Excitation of laser-induced thermal gratings in the gas phase via Raman-active transitions" Opt. Commun. 166, 245-254 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Serie (1)

Q4. E. Loubignac, B. Attal-Trétout, S. Le Boiteux, and D. Kozlov, "Two-color non-linear spectroscopy: application to NO2" C.R. Acad. Sci. Paris, Serie IV, 1013-1027 (2001).

Other (3)

R.W. Boyd, Nonlinear Optics (Academic Press, New York, 1992).

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, 1986).

http://srdata.nist.gov/cccbdb/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the experimental setup: DC, dye cell; CL, cylindrical lens; BS, beam splitter;DL, delay line; FL, focusing lens; IF, interference filter; PMT, photomultiplier tube.

Fig. 2.
Fig. 2.

Comparison of pure electrostrictive (in Ar at 3.8 bar) and combined electrostrictive and thermal (in N2 at 3.4 bar) LIG signals. The amplitude of the signal in Ar is reduced by a factor of two for clarity. An offset of 0.034 µs from the pump laser pulse is introduced to the time scale. To the right, the twentyfold magnified weak tail of the signal in N2 (the solid line, —) and the result of its fitting taking into account the electrostrictive and “instantaneous” energy exchange contributions (the short-dash line, - - -) are plotted.

Fig. 3.
Fig. 3.

The temporal shape of a LIG signal in CO2 at 4 bar (left), with the twentyfold magnified amplitude at large delays (right). The offset of 0.28 µs is introduced to the time scale. The short-dash line (- - -) shows the result of the calculation taking into account only the electrostrictive and “instantaneous” energy exchange contributions; the long-dash line (— — —) represents the result of the signal fitting when the “fast” thermal contribution is included into the model.

Fig. 4.
Fig. 4.

“Fast” energy exchange in CO2 and C3H8: pressure dependence of LIG temporal evolution parameter τf in the two-stage energy exchange model. For CO2, the solid line (???) shows the result of calculation using the known rate of collisional V-T relaxation and the time constant of mass diffusion; the values of τf used for LIG signal fitting at 3 and 4 bar are indicated by dots (???). For C3H8, the dashed line (???) shows the result of fitting of the experimentally derived τf values (???).

Fig. 5.
Fig. 5.

The temporal shape of the LIG signal in C3H8 at 4 bar. The offset of 0.28 µs is introduced to the time scale. The short-dash line (- - -) shows the tenfold enhanced result of the calculation taking into account only the electrostrictive and “instantaneous” energy exchange contributions; the long-dash line (— — —) represents the result of the signal fitting which includes the “fast” thermal contribution.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η p ( Δ v ) exp ( ( 2 ln 2 Δ v ) 2 Γ 2 )
M e ρ · ( n ρ ) T 2 · 1 v s
M i ( n ρ ) T · Δ E i c p
η J g J Z R · ( J + 1 ) · ( J + 2 ) ( 2 J + 3 ) · [ exp ( E J k T ) exp ( E J + 2 k T ) ] · β 2 · η p ( Δ v J )
Δ ε i J Δ E J · η J J η J
M f ( n ρ ) T · Δ ε f c p · τ f τ R

Metrics