Abstract

The paper presents first experiments with a refractive light sword optical element (LSOE). A refractive version of the LSOE was prepared in photoresist by gray scale photolithography. Then we examined chromatic aberrations of the produced element and compared them with those corresponding to two different lenses. For this purpose we performed two experiments, the first one where white light illumination was used and the latter one by the help of monochromatic illumination with three different wavelengths. The obtained results lead to the conclusion that the refractive LSOE does not exhibit significant chromatic aberrations and can be successfully used for imaging with extended depth of focus in polychromatic illumination.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mino and Y. Okano, "Improvement in the optical transfer function of a defocused optical system through the use of shaded apertures," Appl. Opt. 10, 2219-2225 (1971).
    [CrossRef] [PubMed]
  2. J. Ojeda-Castaneda, P. Andres, and A. Diaz, "Annular apodizers for low sensitivity to defocus and to spherical aberration," Opt. Lett. 11, 487-489 (1986).
    [CrossRef] [PubMed]
  3. J. Ojeda-Castaneda, E. Tepichin, and A. Diaz, "Arbitrary high focal depth with a quasioptimum real and positive transmittance apodizer," Appl. Opt. 28, 2666-2670 (1989).
    [CrossRef] [PubMed]
  4. J. Ojeda-Castaneda and L. R. Berriel-Valdos, "Zone plate for arbitrarily high focal depth," Appl. Opt. 29, 994-997 (1990).
    [CrossRef] [PubMed]
  5. E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995).
    [CrossRef] [PubMed]
  6. S. Bradburn, W.T. Cathey, and E.R. Dowski, Jr., "Realizations of focus invariance in optical-digital systems with wave-front coding," Appl. Opt. 36, 9157-9166 (1997).
    [CrossRef]
  7. H. B. Wach, E. R. Dowski, Jr., and W. T. Cathey, "Control of chromatic focal shift through wave-front coding," Appl. Opt. 37, 5359-5367 (1998).
    [CrossRef]
  8. S. C. Tucker, W.T. Cathey, and E. R. Dowski, Jr., "Extended depth of field and aberration control for inexpensive digital microscope systems," Opt. Express 4, 467-474 (1999).
    [CrossRef] [PubMed]
  9. S. S. Sherif, W. T. Cathey, and E. R. Dowski, "Phase plate to extend the depth of field of incoherent hybrid imaging systems," Appl. Opt. 43, 2709-2721 (2004).
    [CrossRef] [PubMed]
  10. N. Davidson, A. A. Friesem, and E. Hasman, "Holographic axilens: high resolution and long focal depth," Opt. Lett. 16, 523-525 (1991).
    [CrossRef] [PubMed]
  11. B.-Z. Dong, J. Liu, B.-Y. Gu, and G.-Z. Yang, "Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution," J. Opt. Soc. Am. A 18, 1465-1470 (2001).
    [CrossRef]
  12. J.-S. Ye, B.-Z. Dong, B.-Y. Gu, G.-Z. Yang, and S.-T. Liu, "Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on a rigorous electromagnetic theory," J. Opt. Soc. Am. A 19, 2030-2035 (2002).
    [CrossRef]
  13. F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003).
    [CrossRef]
  14. J. Lin, J. Liu, J. Ye, and S. Liu, "Design of microlenses with long focal depth based on general focal length function," J. Opt. Soc. Am. A (to be published).
  15. J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005).
    [CrossRef]
  16. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, "Nonparaxial design of generalized axicons," Appl. Opt. 31, 5326-5330 (1992).
    [CrossRef] [PubMed]
  17. J. Sochacki, Z. Jaroszewicz, L.R. Staroński, and A. Kolodziejczyk, "Annular-aperture logarithmic axicon," J. Opt. Soc. Am. A 10, 1765-1768 (1993).
    [CrossRef]
  18. W. Chi, and N. George, "Electronic imaging using a logarithmic asphere," Opt. Lett. 26, 875-877 (2001).
    [CrossRef]
  19. M. A. Golub, V. Shurman, and I. Grossinger, "Extended focus diffractive optical element for Gaussian laser beams," Appl. Opt. 45, 144-150 (2006).
    [CrossRef] [PubMed]
  20. G.-m. Dai, "Optical surface optimization for the correction ofpresbyopia," Appl. Opt. 45, 4184-4195 (2006).
    [CrossRef] [PubMed]
  21. A. Flores, M. R. Wang, and J. J. Yang, "Achromatic hybrid refractive-diffractive lens with extended depth of focus," Appl. Opt. 43, 5618-5630 (2004).
    [CrossRef] [PubMed]
  22. Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007).
    [CrossRef]
  23. J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno and M. J. Yuzuel, "Depth of focus increase by multiplexing programmable diffractive lenses," Opt. Express 14, 10207-10219 (2006).
    [CrossRef] [PubMed]
  24. E. E. Garcia-Guerrero, E. R. Mendez, H. M. Escamilla, T. A. Leskova, and A. A. Maradudin, "Design and fabrication of random phase diffusers for extending the depth of focus," Opt. Express 15, 910-923 (2007).
    [CrossRef] [PubMed]
  25. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc and M. Sypek, "Imaging with extended focal depth by means of lenses with radial and angular modulation," Opt. Express 15, 9184-9193 (2007).
    [CrossRef]
  26. D. Mas, J. Espinosa, J. Perez and C. Illueca, "Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus," Opt. Express 15, 17842-17854 (2007).
    [CrossRef] [PubMed]
  27. A. Kołodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus," J. Mod. Opt. 37, 1283-1286 (1990).
    [CrossRef]
  28. G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005).
    [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Chap. 6.

2007

2006

2005

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005).
[CrossRef]

2004

2003

F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003).
[CrossRef]

2002

2001

1999

1998

1997

1995

1993

1992

1991

1990

A. Kołodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus," J. Mod. Opt. 37, 1283-1286 (1990).
[CrossRef]

J. Ojeda-Castaneda and L. R. Berriel-Valdos, "Zone plate for arbitrarily high focal depth," Appl. Opt. 29, 994-997 (1990).
[CrossRef] [PubMed]

1989

1986

1971

Andres, P.

Ares, J.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005).
[CrossRef]

Bara, S.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005).
[CrossRef]

J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, "Nonparaxial design of generalized axicons," Appl. Opt. 31, 5326-5330 (1992).
[CrossRef] [PubMed]

A. Kołodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus," J. Mod. Opt. 37, 1283-1286 (1990).
[CrossRef]

Berriel-Valdos, L. R.

Bradburn, S.

Campos, J.

Cathey, W. T.

Cathey, W.T.

Chi, W.

Dai, G.-m.

Davidson, N.

Di, F.

F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003).
[CrossRef]

Diaz, A.

Dong, B.-Z.

Dowski, E. R.

Dowski, E.R.

Escalera, J. C.

Escamilla, H. M.

Espinosa, J.

Flores, A.

A. Flores, M. R. Wang, and J. J. Yang, "Achromatic hybrid refractive-diffractive lens with extended depth of focus," Appl. Opt. 43, 5618-5630 (2004).
[CrossRef] [PubMed]

Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007).
[CrossRef]

Flores, R.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005).
[CrossRef]

Friesem, A. A.

Garcia-Guerrero, E. E.

George, N.

Gimeno, R.

Golub, M. A.

Grossinger, I.

Gu, B.-Y.

Guofan, J.

F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003).
[CrossRef]

Hasman, E.

Illueca, C.

Jaroszewicz, Z.

Kolodziejczyk, A.

Leskova, T. A.

Lin, J.

J. Lin, J. Liu, J. Ye, and S. Liu, "Design of microlenses with long focal depth based on general focal length function," J. Opt. Soc. Am. A (to be published).

Liu, J.

B.-Z. Dong, J. Liu, B.-Y. Gu, and G.-Z. Yang, "Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution," J. Opt. Soc. Am. A 18, 1465-1470 (2001).
[CrossRef]

J. Lin, J. Liu, J. Ye, and S. Liu, "Design of microlenses with long focal depth based on general focal length function," J. Opt. Soc. Am. A (to be published).

Liu, S.

J. Lin, J. Liu, J. Ye, and S. Liu, "Design of microlenses with long focal depth based on general focal length function," J. Opt. Soc. Am. A (to be published).

Liu, S.-T.

Liu, Z.

Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007).
[CrossRef]

Lopez-Coronado, O.

Makowski, M.

G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005).
[CrossRef]

Maradudin, A. A.

Mas, D.

Mendez, E. R.

Mikula, G.

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc and M. Sypek, "Imaging with extended focal depth by means of lenses with radial and angular modulation," Opt. Express 15, 9184-9193 (2007).
[CrossRef]

G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005).
[CrossRef]

Mino, M.

Minxian, W.

F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003).
[CrossRef]

Ojeda-Castaneda, J.

Okano, Y.

Perez, J.

Petelczyc, K.

Prokopowicz, C.

G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005).
[CrossRef]

Sherif, S. S.

Shurman, V.

Sochacki, J.

Staronski, L.R.

Sypek, M.

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc and M. Sypek, "Imaging with extended focal depth by means of lenses with radial and angular modulation," Opt. Express 15, 9184-9193 (2007).
[CrossRef]

A. Kołodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus," J. Mod. Opt. 37, 1283-1286 (1990).
[CrossRef]

G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005).
[CrossRef]

Tepichin, E.

Tucker, S. C.

Wach, H. B.

Wang, M. R.

A. Flores, M. R. Wang, and J. J. Yang, "Achromatic hybrid refractive-diffractive lens with extended depth of focus," Appl. Opt. 43, 5618-5630 (2004).
[CrossRef] [PubMed]

Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007).
[CrossRef]

Yang, G.-Z.

Yang, J. J.

A. Flores, M. R. Wang, and J. J. Yang, "Achromatic hybrid refractive-diffractive lens with extended depth of focus," Appl. Opt. 43, 5618-5630 (2004).
[CrossRef] [PubMed]

Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007).
[CrossRef]

Ye, J.

J. Lin, J. Liu, J. Ye, and S. Liu, "Design of microlenses with long focal depth based on general focal length function," J. Opt. Soc. Am. A (to be published).

Ye, J.-S.

Yingbai, Y.

F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003).
[CrossRef]

Yuzuel, M. J.

Appl. Opt.

J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, "Nonparaxial design of generalized axicons," Appl. Opt. 31, 5326-5330 (1992).
[CrossRef] [PubMed]

S. Bradburn, W.T. Cathey, and E.R. Dowski, Jr., "Realizations of focus invariance in optical-digital systems with wave-front coding," Appl. Opt. 36, 9157-9166 (1997).
[CrossRef]

H. B. Wach, E. R. Dowski, Jr., and W. T. Cathey, "Control of chromatic focal shift through wave-front coding," Appl. Opt. 37, 5359-5367 (1998).
[CrossRef]

E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995).
[CrossRef] [PubMed]

J. Ojeda-Castaneda and L. R. Berriel-Valdos, "Zone plate for arbitrarily high focal depth," Appl. Opt. 29, 994-997 (1990).
[CrossRef] [PubMed]

J. Ojeda-Castaneda, E. Tepichin, and A. Diaz, "Arbitrary high focal depth with a quasioptimum real and positive transmittance apodizer," Appl. Opt. 28, 2666-2670 (1989).
[CrossRef] [PubMed]

M. Mino and Y. Okano, "Improvement in the optical transfer function of a defocused optical system through the use of shaded apertures," Appl. Opt. 10, 2219-2225 (1971).
[CrossRef] [PubMed]

S. S. Sherif, W. T. Cathey, and E. R. Dowski, "Phase plate to extend the depth of field of incoherent hybrid imaging systems," Appl. Opt. 43, 2709-2721 (2004).
[CrossRef] [PubMed]

A. Flores, M. R. Wang, and J. J. Yang, "Achromatic hybrid refractive-diffractive lens with extended depth of focus," Appl. Opt. 43, 5618-5630 (2004).
[CrossRef] [PubMed]

M. A. Golub, V. Shurman, and I. Grossinger, "Extended focus diffractive optical element for Gaussian laser beams," Appl. Opt. 45, 144-150 (2006).
[CrossRef] [PubMed]

G.-m. Dai, "Optical surface optimization for the correction ofpresbyopia," Appl. Opt. 45, 4184-4195 (2006).
[CrossRef] [PubMed]

J. Mod. Opt.

A. Kołodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus," J. Mod. Opt. 37, 1283-1286 (1990).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Optometry and Vision Sc.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005).
[CrossRef]

Other

Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007).
[CrossRef]

G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Chap. 6.

Supplementary Material (3)

» Media 1: MOV (181 KB)     
» Media 2: MOV (217 KB)     
» Media 3: MOV (692 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of focusing by the LSOE under plane wave illumination. The infinitesimal angular sector of the element focuses an incident plane wave into a segment PP1 oriented perpendicularly to the sector.

Fig. 2.
Fig. 2.

Interferograms of the fabricated LSOE (a) and the lens (b) obtained in a Mach-Zender interferometer.

Fig. 3.
Fig. 3.

Images of a positive and negative of Snellen optotypes formed by the fabricated lens, the LSOE and the objective in a case of different defocusing parameters given in optical power.

Fig. 4.
Fig. 4.

Images of a positive (Media 1, 181 kB)and negative (Media 2, 217 kB) of the Snellen optotypes formed by the LSOE and corresponding to the full range of analized defocusing from 0D to 1D.

Fig. 5.
Fig. 5.

Images of Snellen optotypes formed by the LSOE in red, green and blue monochromatic illumination (Media 3, 692 kB). Details of the figure are given in the text.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ ( r ) = k r 2 2 [ f 1 + ( Δ f θ 2 π ) ] ,
ρ = r Δ f ( 4 π f 1 + 2 Δ f θ ) , φ = θ + π 2 .

Metrics