Abstract

We present a high speed optical modulation using carrier depletion effect in an asymmetric silicon p-n diode resonator. To optimize coupling efficiency and reduce bending loss, two-step-etched waveguide is used in the racetrack resonator with a directional coupler. The quality factor of the resonator with a circumference of 260 um is 9,482, and the DC on/off ratio is 8 dB at -12V. The device shows the 3dB bandwidth of ~8 GHz and the data transmission up to 12.5Gbit/s.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
    [CrossRef] [PubMed]
  2. International Technology Roadmap for Semiconductors (ITRS), 2006 Edition, Interconnect topic.
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430-436 (2007).
    [CrossRef] [PubMed]
  4. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator," LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537-538 (2007).
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
    [CrossRef] [PubMed]
  6. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15,17106-17113 (2007).
    [CrossRef] [PubMed]
  7. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
    [CrossRef]
  8. D. Marris, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, "Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure," Opt. Express 16, 334-339 (2008).
    [CrossRef]
  9. G. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, "Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators," Opt. Express 16, 5218-5226 (2008).
    [CrossRef] [PubMed]
  10. J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
    [CrossRef]
  11. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  12. A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]

2008 (3)

2007 (4)

2004 (1)

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[CrossRef] [PubMed]

2000 (1)

A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Cassan, E.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

Ciftcioglu, B.

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Fédéli, J. M.

Gan, F.

Geis, M. W.

Green, W. M. J.

Grein, M. E.

Ippen, E. P.

Izhaky, N.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Kärtner, F. X.

Kim, G.

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Laval, S.

Lennon, D. M.

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Lipson, M.

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Lyan, P.

Lyszczarz, T. M.

Manipatruni, S.

Marris, D.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

Orcutt, J. S.

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Park, J. -W.

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Reed, G. T.

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[CrossRef] [PubMed]

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Schmidt, B.

Schulein, R. T.

Sekaric, L.

Shakya, J.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Spector, S. J.

Vivien, L.

Vlasov, Y. A.

Xu, Q.

Yariv, A.

A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yoon, J. U.

You, J.-B.

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Zhou, G.

Electron. Lett. (2)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Nature (1)

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[CrossRef] [PubMed]

Opt. Express (5)

Other (2)

International Technology Roadmap for Semiconductors (ITRS), 2006 Edition, Interconnect topic.

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator," LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537-538 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The top-view of microscopic picture of the fabricated silicon p-n diode racetrack resonator and the schematic diagram of the cross-sectional view of the directional coupler region. (b) The cross section of the racetrack waveguide.

Fig. 2.
Fig. 2.

Normalized transmission spectra of the modulator measured at 0 V and -12 V (solid curves). The calculated transmission spectra at 0 V and -12 V are depicted with the dotted curves. Inset shows the measured and calculated DC on/off ratios with varying bias.

Fig. 3.
Fig. 3.

The measured optical frequency response of the silicon p-n diode based racetrack modulator with a 30um-ring radius and 35um-directional coupler.

Fig. 4.
Fig. 4.

On-wafer measurement of eye diagrams with NRZ signal (PRBS 27-1, Vpp=4 V) (a) at 5 Gbps (b) at 12.5 Gbps

Metrics