Abstract

We present a high speed optical modulation using carrier depletion effect in an asymmetric silicon p-n diode resonator. To optimize coupling efficiency and reduce bending loss, two-step-etched waveguide is used in the racetrack resonator with a directional coupler. The quality factor of the resonator with a circumference of 260 um is 9,482, and the DC on/off ratio is 8 dB at -12V. The device shows the 3dB bandwidth of ~8 GHz and the data transmission up to 12.5Gbit/s.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
    [CrossRef] [PubMed]
  2. International Technology Roadmap for Semiconductors (ITRS), 2006 Edition, Interconnect topic.
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430-436 (2007).
    [CrossRef] [PubMed]
  4. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator," LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537-538 (2007).
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
    [CrossRef] [PubMed]
  6. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15,17106-17113 (2007).
    [CrossRef] [PubMed]
  7. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
    [CrossRef]
  8. D. Marris, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, "Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure," Opt. Express 16, 334-339 (2008).
    [CrossRef]
  9. G. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, "Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators," Opt. Express 16, 5218-5226 (2008).
    [CrossRef] [PubMed]
  10. J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
    [CrossRef]
  11. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  12. A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]

2008 (3)

2007 (4)

2004 (1)

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[CrossRef] [PubMed]

2000 (1)

A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Cassan, E.

Chetrit, Y.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Ciftcioglu, B.

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Fédéli, J. M.

Gan, F.

Geis, M. W.

Green, W. M. J.

Grein, M. E.

Ippen, E. P.

Izhaky, N.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Kärtner, F. X.

Kim, G.

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Laval, S.

Lennon, D. M.

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Lyan, P.

Lyszczarz, T. M.

Manipatruni, S.

Marris, D.

Nguyen, H.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Orcutt, J. S.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

Park, J. -W.

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Reed, G. T.

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[CrossRef] [PubMed]

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007)
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

Schmidt, B.

Schulein, R. T.

Sekaric, L.

Shakya, J.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Spector, S. J.

Vivien, L.

Vlasov, Y. A.

Xu, Q.

Yariv, A.

A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yoon, J. U.

You, J.-B.

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Zhou, G.

Electron. Lett. (2)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high speed applications," Electron. Lett. 43,1196-1197 (2007).
[CrossRef]

A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. -W. Park, J.-B. You, and G. Kim, "RF frequency doubling using a silicon p-i-n diode-based Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1384-1386 (2008).
[CrossRef]

Nature (1)

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[CrossRef] [PubMed]

Opt. Express (5)

Other (2)

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator," LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537-538 (2007).

International Technology Roadmap for Semiconductors (ITRS), 2006 Edition, Interconnect topic.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The top-view of microscopic picture of the fabricated silicon p-n diode racetrack resonator and the schematic diagram of the cross-sectional view of the directional coupler region. (b) The cross section of the racetrack waveguide.

Fig. 2.
Fig. 2.

Normalized transmission spectra of the modulator measured at 0 V and -12 V (solid curves). The calculated transmission spectra at 0 V and -12 V are depicted with the dotted curves. Inset shows the measured and calculated DC on/off ratios with varying bias.

Fig. 3.
Fig. 3.

The measured optical frequency response of the silicon p-n diode based racetrack modulator with a 30um-ring radius and 35um-directional coupler.

Fig. 4.
Fig. 4.

On-wafer measurement of eye diagrams with NRZ signal (PRBS 27-1, Vpp=4 V) (a) at 5 Gbps (b) at 12.5 Gbps

Metrics