Abstract

We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300 meters distance range. Especially, we will demonstrate that both the output power as well as the demanding coherence properties required from the laser source can be accomplished by an all semiconductor laser. Preliminary tests at a distance of 40 meters indicate a typical signal to noise ratio of 9 dB. This result is obtained at a clear day with an up-date rate of 12 Hz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ZephIR  Laser Anemometer from Natural Power, http://www.naturalpower.com/products-and-services/zephir/zephir-product.html.
  2. G. G. Matvienko, S. N. Polyakov, and V. K. Oshlakov, "Low-coherence doppler lidar with multiple time coherence of reference and probe waves," Laser Phys. 17, 1327-1332 (2007).
    [CrossRef]
  3. J.-L. Shen, Kunnemeyer, "Amplified reference pulse storage for low-coherence pulsed Doppler lidar," Appl. Opt. 45, 8346-9 (2006).
    [CrossRef] [PubMed]
  4. A. A. Dorrington, R. Kunnemeyer, and P. M. Danehy, "Reference-beam storage for long-range low-coherence pulsed Doppler lidar," Appl. Opt. 40, 3076-81 (2001).
    [CrossRef]
  5. K. W. Fischer, "High spectral resolution, low-coherence technique for daytime Doppler wind measurements with lidar," IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium. Remote Sensing for a Sustainable Future 1, (Cat. No.96CH35875), 694-6, (1996).
  6. R. Frehlich, "Comparison of 2- and 10-µm Coherent Doppler Lidar Performance," J. Atmos. Oceanic Technol. 12, 415-420 (1995).
    [CrossRef]
  7. T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 mm using Nd:YAG lasers," Opt. Lett. 12, 239-241(1987).
    [CrossRef] [PubMed]
  8. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Second Edition), Springer (1993).
  9. M. L. Osayuki, W. Hu, R. M. Lammert, T. Liu, Y. Ma, S. W. Oh, C. Panja, P. T. Rudy, T. Stakelon, and J. E. Unga, "High brightness semiconductor lasers," SPIE Photonics West, LASE Conference 6456, 64560D.1-64560D.7, (2007).
  10. C. M. Sonnenschein and F. A. Horrigan, "Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere," Appl. Opt. 10, 1600-1604 (1971).
    [CrossRef] [PubMed]
  11. M. J. Kavaya, and P. J. M. Suni, "Continuous wave coherent laser radar: calculation of measurement location and volume," Appl. Opt. 30, 2634-2642 (1991).
    [CrossRef] [PubMed]
  12. Z. Yanzeng, J. P. Madison, and R. M. Hardesty, "Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory," Appl. Opt. 29, 4111-4119 (1990).
  13. BETASPEC, http://www.cas.usf.edu/lidarlab/lidar_download.html.

2007 (1)

G. G. Matvienko, S. N. Polyakov, and V. K. Oshlakov, "Low-coherence doppler lidar with multiple time coherence of reference and probe waves," Laser Phys. 17, 1327-1332 (2007).
[CrossRef]

2006 (1)

2001 (1)

1995 (1)

R. Frehlich, "Comparison of 2- and 10-µm Coherent Doppler Lidar Performance," J. Atmos. Oceanic Technol. 12, 415-420 (1995).
[CrossRef]

1991 (1)

1990 (1)

1987 (1)

1971 (1)

Byer, R. L.

Byvik, C. E.

Danehy, P. M.

Dorrington, A. A.

Frehlich, R.

R. Frehlich, "Comparison of 2- and 10-µm Coherent Doppler Lidar Performance," J. Atmos. Oceanic Technol. 12, 415-420 (1995).
[CrossRef]

Hardesty, R. M.

Horrigan, F. A.

Kane, T. J.

Kavaya, M. J.

Kozlovsky, W. J.

Kunnemeyer, R.

Madison, J. P.

Matvienko, G. G.

G. G. Matvienko, S. N. Polyakov, and V. K. Oshlakov, "Low-coherence doppler lidar with multiple time coherence of reference and probe waves," Laser Phys. 17, 1327-1332 (2007).
[CrossRef]

Oshlakov, V. K.

G. G. Matvienko, S. N. Polyakov, and V. K. Oshlakov, "Low-coherence doppler lidar with multiple time coherence of reference and probe waves," Laser Phys. 17, 1327-1332 (2007).
[CrossRef]

Polyakov, S. N.

G. G. Matvienko, S. N. Polyakov, and V. K. Oshlakov, "Low-coherence doppler lidar with multiple time coherence of reference and probe waves," Laser Phys. 17, 1327-1332 (2007).
[CrossRef]

Shen, J.-L.

Sonnenschein, C. M.

Suni, P. J. M.

Yanzeng, Z.

Appl. Opt. (5)

J. Atmos. Oceanic Technol. (1)

R. Frehlich, "Comparison of 2- and 10-µm Coherent Doppler Lidar Performance," J. Atmos. Oceanic Technol. 12, 415-420 (1995).
[CrossRef]

Laser Phys. (1)

G. G. Matvienko, S. N. Polyakov, and V. K. Oshlakov, "Low-coherence doppler lidar with multiple time coherence of reference and probe waves," Laser Phys. 17, 1327-1332 (2007).
[CrossRef]

Opt. Lett. (1)

Other (5)

ZephIR  Laser Anemometer from Natural Power, http://www.naturalpower.com/products-and-services/zephir/zephir-product.html.

K. W. Fischer, "High spectral resolution, low-coherence technique for daytime Doppler wind measurements with lidar," IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium. Remote Sensing for a Sustainable Future 1, (Cat. No.96CH35875), 694-6, (1996).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Second Edition), Springer (1993).

M. L. Osayuki, W. Hu, R. M. Lammert, T. Liu, Y. Ma, S. W. Oh, C. Panja, P. T. Rudy, T. Stakelon, and J. E. Unga, "High brightness semiconductor lasers," SPIE Photonics West, LASE Conference 6456, 64560D.1-64560D.7, (2007).

BETASPEC, http://www.cas.usf.edu/lidarlab/lidar_download.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The MOPA semiconductor unit including a first, single-frequency, DFB laser and a tapered power amplifier.

Fig. 2.
Fig. 2.

A collection of RF power spectra of the photocurrent obtained from the Mac-Zender interferometer. The operating conditions for the MOPA laser is: Drive current for the DFBsection is 460mA, and the drive current for the amplifier section=4.0A, and the temperature of the laser C-mount=22°C. The FWHM line with of the laser optical output is equal to the HWHM (3-dB level) of the power spectrum of the photo current. Horisontal axis: 600Khz/div, vertical axis: 3 dB/div.

Fig. 3.
Fig. 3.

The intensity distribution from the naked laser shown by a viewer-card. The fast axis is the vertical direction and the slow axis is aligned horizontally. The intensity profile along the slow axis shows a line structure.

Fig. 4.
Fig. 4.

The optical set-up for the laser anemometer using the MOPA semiconductor laser

Fig. 5.
Fig. 5.

An image of the intensity distribution across the measuring volume. The higher non-Gaussian spatial frequencies are clearly seen outside the Gaussian focus spot. These unwanted spatial frequencies will be not be imaged and thus mixed efficiently with the reference beam at the detector surface.

Fig. 6.
Fig. 6.

A typical Doppler spectrum. A Gaussian fit to the Doppler spectrum is shown as the dotted curve.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( S N ) = π R d η a 2 P transmit Γ ( f ) q e Δ f bin .
Γ ( f ) = β λ e 2 α L Δ f bin λ 2 2 π σ wind 2 e λ 2 ( f f Doppler ) 2 8 σ wind 2
S N = S σ sn = M 2 ( S N )

Metrics