Abstract

A photonic crystal defect consisting of several subwavelength holes was investigated as a means to increase the surface area of the defect region without compromising the quality factor of the structure. Finite-difference time-domain calculations were performed to determine the relationships between the size of the multi-hole defect (MHD) region, resonance frequency, quality factor, and refractive index of the defect holes. The advantage of using the MHD for sensing applications is demonstrated through a comparison with a single hole defect (SHD) photonic crystal structure. Assuming the same monolayer thickness of biomaterial coats the defect hole walls of the MHD and SHD, the MHD has a three times larger change in resonance frequency and two times larger quality factor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  2. T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
    [CrossRef]
  3. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (1999).
    [CrossRef]
  4. S. Assefa, S. J. McNab, and Y. A. Vlasov, "Transmission of slow light through photonic crystal waveguide bends," Opt. Lett. 31, 745-747 (2006).
    [CrossRef] [PubMed]
  5. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
    [CrossRef]
  6. M. Soljačić, S. G. Johnson, and S. Fan, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
    [CrossRef]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  8. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
    [CrossRef]
  9. M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
    [CrossRef]
  10. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
    [CrossRef]
  11. M. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  12. T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
    [CrossRef]
  13. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  14. C. Kang and S. M. Weiss, "Photonic crystal defect tuning for optimized light-matter interaction," Proc. of SPIE vol. 7031, 70310G (2008).
    [CrossRef]
  15. J. C. M. Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. Roy. Soc. London A 203, 385-420 (1904).
    [CrossRef]
  16. O. Levy and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
    [CrossRef]
  17. We note that our FDTD simulations are based on a 2D device and do not consider the vertical confinement factor found in the commonly used slab waveguide photonic crystals. Due to the vertical evanescent field that results from index-based waveguiding, the quality factor of the cavity is reduced. However, the simulations found in this study are still valuable for designing a slab waveguide based sensor [1].
  18. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech, 2000).
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bernel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef] [PubMed]
  21. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997), Erratum, ibid.109, 4128 (1998).
    [CrossRef]
  22. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
    [CrossRef]
  23. G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
    [CrossRef] [PubMed]
  24. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
    [CrossRef] [PubMed]

2008 (2)

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
[CrossRef] [PubMed]

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

2005 (1)

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

2004 (1)

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

2002 (1)

2001 (1)

1999 (4)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (1999).
[CrossRef]

1997 (1)

O. Levy and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

1994 (1)

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
[CrossRef]

1904 (1)

J. C. M. Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. Roy. Soc. London A 203, 385-420 (1904).
[CrossRef]

Akahane, Y.

T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Asano, T.

T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Assefa, S.

Baba, T.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Bai, S.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
[CrossRef] [PubMed]

Berenger, J.

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
[CrossRef]

Bernel, P.

Burr, G.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Chen, R. T.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Chen, X.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Chou, S. Y.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (1999).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Fan, S.

M. Soljačić, S. G. Johnson, and S. Fan, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Farjadpour, A.

Fauchet, P. M.

Fukaya, N.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. Roy. Soc. London A 203, 385-420 (1904).
[CrossRef]

Gu, L.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Ibanescu, M.

Imada, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Jiang, W.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Lee, M.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Levy, O.

O. Levy and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

Lipson, M.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Loncar, M.

M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Manolatou, C.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

McNab, S. J.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Morton, K. J.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
[CrossRef] [PubMed]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Najmaie, A.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
[CrossRef] [PubMed]

Nieberg, G.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
[CrossRef] [PubMed]

Noda, S.

T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (1999).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Rodriguez, A.

Rong, G.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
[CrossRef] [PubMed]

Roundy, D.

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Schmidt, B.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Sipe, J. E.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
[CrossRef] [PubMed]

Soljacic, M.

Song, B.

T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Stroud, D.

O. Levy and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Vlasov, Y. A.

Weiss, S. M.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Biosens. Bioelectron. (1)

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008).
[CrossRef] [PubMed]

Electron. Lett. (1)

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
[CrossRef] [PubMed]

Nature (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Philos. Trans. Roy. Soc. London A (1)

J. C. M. Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. Roy. Soc. London A 203, 385-420 (1904).
[CrossRef]

Phys. Rev. B (2)

O. Levy and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (4)

We note that our FDTD simulations are based on a 2D device and do not consider the vertical confinement factor found in the commonly used slab waveguide photonic crystals. Due to the vertical evanescent field that results from index-based waveguiding, the quality factor of the cavity is reduced. However, the simulations found in this study are still valuable for designing a slab waveguide based sensor [1].

C. Kang and S. M. Weiss, "Photonic crystal defect tuning for optimized light-matter interaction," Proc. of SPIE vol. 7031, 70310G (2008).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech, 2000).

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997), Erratum, ibid.109, 4128 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Dielectric constant plot of MHD simulation space, where black indicates ε=12, white indicates ε=1. Detailed MHD regions with effect radius (b) 0.2a, (c) 0.3a, and (d) 0.4a are also shown. The defect hole radius in all cases is 0.04a, with defect hole spacing 0.12a.

Fig. 2.
Fig. 2.

(Color online) (a) Photonic bands for the photonic crystal with hole radii of 0.4a. A photonic bandgap exists for only for the TE polarization between 0.2462 and 0.4052. (b) Resonance frequency for varied defect hole dielectric constant and MHD effective radius.

Fig. 3.
Fig. 3.

(Color online) (a) Change in cavity quality factor for varied defect hole dielectric constant and effective MHD radius, (b) Field distribution for a MHD with effective radius 0.2a, with defect hole radius and dielectric constant 0.04a and 1.05, respectively.

Fig. 4.
Fig. 4.

(Color online) Plot of resonance shift as a function of monolayer optical thickness. The monolayer optical thickness is specified as a fraction of the photonic crystal lattice constant, a.

Metrics