Abstract

Based on the concept of sub-wavelength imaging through compensated bilayer of anisotropic metamaterials (AMMs), which is an expansion of the perfect lens configuration, we propose two dimensional prism pair structures of compensated AMMs that are capable of manipulating two dimensional sub-wavelength images. We demonstrate that through properly designed symmetric and asymmetric compensated prism pair structures planar image rotation with arbitrary angle, lateral image shift, as well as image magnification could be achieved with sub-wavelength resolution. Both theoretical analysis and full wave electromagnetic simulations have been employed to verify the properties of the proposed prism structures. Utilizing the proposed AMM prisms, flat optical image of objects with sub-wavelength features can be projected and magnified to wavelength scale allowing for further optical processing of the image by conventional optics.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  4. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
    [CrossRef]
  5. J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286 (2002).
    [CrossRef]
  6. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  7. S. A. Ramakrishna and J. B. Pendry, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).
  8. N. Lagarkov and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett. 92, 077401(2004).
    [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  10. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  11. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  12. D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  13. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
    [CrossRef]
  14. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
    [CrossRef]
  15. K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003).
    [CrossRef]
  16. O. Siddiqui and G. V. Eleftheriades, "Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids," Appl. Phys. Lett. 85, 1292-1294 (2004).
    [CrossRef]
  17. J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 15, 6345-6364 (2003).
  18. D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New. J. Phys. 7, 162 (2005).
    [CrossRef]
  19. Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
    [CrossRef]
  20. Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
    [CrossRef]
  21. V. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  22. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
    [CrossRef] [PubMed]
  23. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
    [CrossRef]
  24. A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432-3434 (2007).
    [CrossRef] [PubMed]
  25. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
    [CrossRef] [PubMed]
  26. I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
    [CrossRef] [PubMed]
  27. M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008).
    [CrossRef]
  28. A. V. Kildishev and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett. 33, 43-45(2008).
    [CrossRef]
  29. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

2008

M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008).
[CrossRef]

A. V. Kildishev and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett. 33, 43-45(2008).
[CrossRef]

2007

A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432-3434 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

2006

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
[CrossRef]

2005

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New. J. Phys. 7, 162 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

V. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

2004

N. Lagarkov and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett. 92, 077401(2004).
[CrossRef] [PubMed]

O. Siddiqui and G. V. Eleftheriades, "Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids," Appl. Phys. Lett. 85, 1292-1294 (2004).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

2003

K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003).
[CrossRef]

D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 15, 6345-6364 (2003).

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

S. A. Ramakrishna and J. B. Pendry, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

2002

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286 (2002).
[CrossRef]

2001

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
[CrossRef]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Alekseyev, L. V.

Balmain, K. G.

K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003).
[CrossRef]

Blaikie, R.

Chen, Y.

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
[CrossRef]

Davis, C.

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Eleftheriades, G. V.

O. Siddiqui and G. V. Eleftheriades, "Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids," Appl. Phys. Lett. 85, 1292-1294 (2004).
[CrossRef]

Engheta, N.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Feng, Y.

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
[CrossRef]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Huang, Y.

Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
[CrossRef]

Hung, Y.

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Ilvonen, S.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
[CrossRef]

Jacob, Z.

Jiang, T.

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

Kildishev, A. V.

Kissel, V. N.

N. Lagarkov and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett. 92, 077401(2004).
[CrossRef] [PubMed]

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Kremer, P. C.

K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003).
[CrossRef]

Lagarkov, N.

N. Lagarkov and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett. 92, 077401(2004).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lindell, I. V.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

Luettgen, A. A. E.

K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003).
[CrossRef]

Melville, D.

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

Narimanov, E.

Narimanov, E. E.

Nikoskinen, K. I.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
[CrossRef]

Pendry, J. B.

S. A. Ramakrishna and J. B. Pendry, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 15, 6345-6364 (2003).

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Platzman, P. M.

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286 (2002).
[CrossRef]

Podolskiy, V.

Psaltis, D.

M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008).
[CrossRef]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 15, 6345-6364 (2003).

S. A. Ramakrishna and J. B. Pendry, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

Schultz, S.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

Schurig, D.

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New. J. Phys. 7, 162 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

Shalaev, V. M.

Shen, J. T.

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286 (2002).
[CrossRef]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Siddiqui, O.

O. Siddiqui and G. V. Eleftheriades, "Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids," Appl. Phys. Lett. 85, 1292-1294 (2004).
[CrossRef]

Smith, D. R.

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New. J. Phys. 7, 162 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

Smolyaninov, I.

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Teng, X.

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
[CrossRef]

Tretyakov, S. A.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
[CrossRef]

Tsang, M.

M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008).
[CrossRef]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Zhao, J.

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

Appl. Phys. Lett.

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286 (2002).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004).
[CrossRef]

O. Siddiqui and G. V. Eleftheriades, "Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids," Appl. Phys. Lett. 85, 1292-1294 (2004).
[CrossRef]

IEEE Trans. Antennas Propag.

K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003).
[CrossRef]

J. Appl. Phys.

Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006).
[CrossRef]

J. Mod. Opt.

S. A. Ramakrishna and J. B. Pendry, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002).
[CrossRef]

J. Phys.: Condens. Matter

J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 15, 6345-6364 (2003).

Microwave Opt. Technol. Lett.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001).
[CrossRef]

New. J. Phys.

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New. J. Phys. 7, 162 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phy. Rev. B

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

Phys. Rev. B

Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007).
[CrossRef]

M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008).
[CrossRef]

Phys. Rev. Lett.

D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

N. Lagarkov and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett. 92, 077401(2004).
[CrossRef] [PubMed]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007).
[CrossRef] [PubMed]

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Other

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1. 2.
Fig.1. 2.

point source propagating through a compensated AMM bilayer.

Fig. 2.
Fig. 2.

Electric field mapping for two point sources located at the front interface of a NCM compensated bilayer with a loss tangent of 10-3 ((a), and (c)) and the comparison of the beamwidth of electric field distribution at the front and back interfaces ((b), and (d)) for an equal thickness bilayer ((a), and (b) with L 2=L 1) and an unequal thickness bilayer ((c) and (d) with L 2=3L 1), respectively. The white dashed lines indicate the boundaries of the bilayer.

Fig. 3.
Fig. 3.

(a) Schemetic of a symmetry compensated prism pair configuration. (b) Electric field distribution of two point sources imaged with the S-CPP structure with a loss tangent of 0.01.

Fig. 4.
Fig. 4.

Electric field distribution of two point sources imaged with four identical S-CPP structures cascaded together with a loss tangent of 0.01. Such configuration could produce lateral image translation with sub-wavelenth resolution. The white lines indicate the boundaries of the S-CPPs.

Fig. 5.
Fig. 5.

Schematic of an asymmetry compensated prism pair configuration.

Fig. 6.
Fig. 6.

(a) Electric field distribution for three point sources imaged with an AS-CPP with a designed magnification of 3. Loss tangent of 0.01 is included for each material parameter. Line scans at the source (b), and image (c) planes of the electric field which have been normalized to that of the source value.

Fig. 7.
Fig. 7.

(a) Electric field distribution for three point sources imaged with two cascaded AS-CPPs with a total designed magnification of 9. Loss tangent of 0.01 is included for each material parameter. Line scans at the source (b), and image (c) planes of the electric field which have been normalized to that of the source value.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε ̂ j = ε 0 ( ε jx x ̂ x ̂ + ε jy y ̂ y ̂ + ε jz z ̂ z ̂ ) , μ ̂ j = μ 0 ( μ jx x ̂ x ̂ + μ jy y ̂ y ̂ + μ jz z ̂ z ̂ ) . ( j = 1 , 2 ) .
T = 8 [ ( 1 + p ) ( 1 + q ) ( 1 + r ) e i ( k 1 x L 1 + k 2 x L 2 ) + ( 1 + p ) ( 1 q ) ( 1 r ) e i ( k 1 x L 1 k 2 x L 2 ) ,
+ ( 1 p ) ( 1 q ) ( 1 + r ) e i ( k 1 x L 1 k 2 x L 2 ) + ( 1 p ) ( 1 + q ) ( 1 r ) e i ( k 1 x L 1 + k 2 x L 2 ) ] 1
p = k 1 x μ 1 y k 0 x , q = μ 1 y k 2 x μ 2 y k 1 x , r = μ 2 y k 0 x k 2 x ,
k y 2 + k 0 x 2 = k 0 2 , k y 2 + k jx 2 μ jx μ jy = k 0 2 ε jz μ jx , ( j = 0 , 1 )
ε ̂ 1 = μ ̂ 1 = [ α 1 0 0 0 β 1 0 0 0 γ α 1 ] , ε ̂ 2 = μ ̂ 2 = [ α 2 0 0 0 α 2 β 1 η 2 α 1 0 0 0 γ α 2 ] ,
τ = I 1 I 2 S 1 S 2 = cos α cos β ,
η = O 1 I 1 S 1 O 1 = O 2 I 2 S 2 O 2 = tan β tan α ,

Metrics