Abstract

In this article we report our experimental results on non collinear four-wave mixing (FWM) at air-dielectric interfaces. We generated FWM signal from the two interfaces of a 1mm thick fused silica slide with air using two 800 nm, 100 fs pump pulses in non-collinear pump-probe type geometry. We observe that there is a maximum peak shift of ~1.5 nm in FWM signals corresponding to the two interfaces of the same silica slide. Further, we find that the intensity of FWM signal observed at air to silica interface is less than that from silica to air interface. We briefly elaborate on this observation with systematic study of FWM in fused silica.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience, New York, 1984).
  2. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
    [CrossRef]
  3. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-Enhanced Second-Harmonic Generation", Phys. Rev. Lett. 46, 145-148 (1981).
    [CrossRef]
  4. C. C. Wang and A. N. Duminiski, "Second harmonic generation of light at the boundary of alkyl halides and glasses," Phys. Rev. Lett. 20,668-671 (1968).
    [CrossRef]
  5. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, "General considerations on optical second-harmonic generation from surfaces and interfaces," Phys. Rev. B 33, 8254-8263 (1986).
    [CrossRef]
  6. Y. R. Shen, "Surface properties probed by second harmonic and sum frequency generation," Nature 337, 519-525 (1989).
    [CrossRef]
  7. T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A. 52, 4116 (1995).
    [CrossRef] [PubMed]
  8. R. L. Sutherland with contributions by D. G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics, Second Edition, revised and expanded, (New York, NY: Marcel Dekker) (2003).
    [CrossRef]
  9. D. Meshulach, Y. Barad, and Y. Silberberg, "Measurement of ultrafast optical pulses by third-harmonic generation," J. Opt. Soc. Am. B 14, 2122 - 2125 (1997).
    [CrossRef]
  10. Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
    [CrossRef]
  11. G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
    [CrossRef]
  12. V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982 (2003).
    [CrossRef]
  13. R. S. S. Kumar, S. S. Harsha, and D. N. Rao, "Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation," Appl. Phys. B 86, 615 - 621 (2007).
    [CrossRef]
  14. M. Samoc, A. Samoc, B. L. Davis, "Third harmonic autocorrelation and wave-mixing in a thin film of poly(p-phenylenevinylene)," Opt. Express 11, 1787 -1792 (2003), http://www.opticsexpress.org/abstract.cfm?uri=OE-11-15-1787.
    [CrossRef] [PubMed]
  15. Th. Schneider, R. P. Schmid, and J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B. 72, 563 - 565 (2001).
    [CrossRef]

2007 (1)

R. S. S. Kumar, S. S. Harsha, and D. N. Rao, "Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation," Appl. Phys. B 86, 615 - 621 (2007).
[CrossRef]

2003 (2)

M. Samoc, A. Samoc, B. L. Davis, "Third harmonic autocorrelation and wave-mixing in a thin film of poly(p-phenylenevinylene)," Opt. Express 11, 1787 -1792 (2003), http://www.opticsexpress.org/abstract.cfm?uri=OE-11-15-1787.
[CrossRef] [PubMed]

V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982 (2003).
[CrossRef]

2002 (1)

G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
[CrossRef]

2001 (1)

Th. Schneider, R. P. Schmid, and J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B. 72, 563 - 565 (2001).
[CrossRef]

1997 (2)

D. Meshulach, Y. Barad, and Y. Silberberg, "Measurement of ultrafast optical pulses by third-harmonic generation," J. Opt. Soc. Am. B 14, 2122 - 2125 (1997).
[CrossRef]

Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

1995 (1)

T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A. 52, 4116 (1995).
[CrossRef] [PubMed]

1989 (1)

Y. R. Shen, "Surface properties probed by second harmonic and sum frequency generation," Nature 337, 519-525 (1989).
[CrossRef]

1986 (1)

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, "General considerations on optical second-harmonic generation from surfaces and interfaces," Phys. Rev. B 33, 8254-8263 (1986).
[CrossRef]

1981 (1)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-Enhanced Second-Harmonic Generation", Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

1968 (2)

C. C. Wang and A. N. Duminiski, "Second harmonic generation of light at the boundary of alkyl halides and glasses," Phys. Rev. Lett. 20,668-671 (1968).
[CrossRef]

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
[CrossRef]

Barad, Y.

Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

D. Meshulach, Y. Barad, and Y. Silberberg, "Measurement of ultrafast optical pulses by third-harmonic generation," J. Opt. Soc. Am. B 14, 2122 - 2125 (1997).
[CrossRef]

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
[CrossRef]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
[CrossRef]

Chen, C. K.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-Enhanced Second-Harmonic Generation", Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Chen, W.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, "General considerations on optical second-harmonic generation from surfaces and interfaces," Phys. Rev. B 33, 8254-8263 (1986).
[CrossRef]

Davis, B. L.

de Castro, A. R. B.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-Enhanced Second-Harmonic Generation", Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Duminiski, A. N.

C. C. Wang and A. N. Duminiski, "Second harmonic generation of light at the boundary of alkyl halides and glasses," Phys. Rev. Lett. 20,668-671 (1968).
[CrossRef]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Guyot-Sionnest, P.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, "General considerations on optical second-harmonic generation from surfaces and interfaces," Phys. Rev. B 33, 8254-8263 (1986).
[CrossRef]

Harowitz, M.

Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Harsha, S. S.

R. S. S. Kumar, S. S. Harsha, and D. N. Rao, "Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation," Appl. Phys. B 86, 615 - 621 (2007).
[CrossRef]

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
[CrossRef]

Kumar, R. S. S.

R. S. S. Kumar, S. S. Harsha, and D. N. Rao, "Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation," Appl. Phys. B 86, 615 - 621 (2007).
[CrossRef]

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
[CrossRef]

Matsumoto, S.

G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
[CrossRef]

Meshulach, D.

Midorikawa, K.

G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
[CrossRef]

Nabekawa, Y.

G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
[CrossRef]

Petrov, G.

V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982 (2003).
[CrossRef]

Rao, D. N.

R. S. S. Kumar, S. S. Harsha, and D. N. Rao, "Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation," Appl. Phys. B 86, 615 - 621 (2007).
[CrossRef]

Reif, J.

Th. Schneider, R. P. Schmid, and J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B. 72, 563 - 565 (2001).
[CrossRef]

Samoc, A.

Samoc, M.

Schmid, R. P.

Th. Schneider, R. P. Schmid, and J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B. 72, 563 - 565 (2001).
[CrossRef]

Schneider, Th.

Th. Schneider, R. P. Schmid, and J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B. 72, 563 - 565 (2001).
[CrossRef]

Shcheslavskiy, V.

V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982 (2003).
[CrossRef]

Shen, Y. R.

Y. R. Shen, "Surface properties probed by second harmonic and sum frequency generation," Nature 337, 519-525 (1989).
[CrossRef]

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, "General considerations on optical second-harmonic generation from surfaces and interfaces," Phys. Rev. B 33, 8254-8263 (1986).
[CrossRef]

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-Enhanced Second-Harmonic Generation", Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

D. Meshulach, Y. Barad, and Y. Silberberg, "Measurement of ultrafast optical pulses by third-harmonic generation," J. Opt. Soc. Am. B 14, 2122 - 2125 (1997).
[CrossRef]

Tsang, T. Y. F.

T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A. 52, 4116 (1995).
[CrossRef] [PubMed]

Veres, G.

G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
[CrossRef]

Wang, C. C.

C. C. Wang and A. N. Duminiski, "Second harmonic generation of light at the boundary of alkyl halides and glasses," Phys. Rev. Lett. 20,668-671 (1968).
[CrossRef]

Yakovlev, V. V.

V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982 (2003).
[CrossRef]

Appl. Phys. B (1)

R. S. S. Kumar, S. S. Harsha, and D. N. Rao, "Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation," Appl. Phys. B 86, 615 - 621 (2007).
[CrossRef]

Appl. Phys. B. (1)

Th. Schneider, R. P. Schmid, and J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B. 72, 563 - 565 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Barad, H. Eisenberg, M. Harowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

G. Veres, S. Matsumoto, Y. Nabekawa, and K. Midorikawa, "Enhancement of third-harmonic generation in absorbing media," Appl. Phys. Lett. 81, 3714-3716 (2002).
[CrossRef]

V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

Y. R. Shen, "Surface properties probed by second harmonic and sum frequency generation," Nature 337, 519-525 (1989).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee "Optical second harmonic generation in reflection from media with inversion symmetry," Phys. Rev. 174, 813-822 (1968).
[CrossRef]

Phys. Rev. A. (1)

T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A. 52, 4116 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, "General considerations on optical second-harmonic generation from surfaces and interfaces," Phys. Rev. B 33, 8254-8263 (1986).
[CrossRef]

Phys. Rev. Lett. (2)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-Enhanced Second-Harmonic Generation", Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

C. C. Wang and A. N. Duminiski, "Second harmonic generation of light at the boundary of alkyl halides and glasses," Phys. Rev. Lett. 20,668-671 (1968).
[CrossRef]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience, New York, 1984).

R. L. Sutherland with contributions by D. G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics, Second Edition, revised and expanded, (New York, NY: Marcel Dekker) (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental set-up used in the study; (b) Snap-shot of the FWM observed as blue fluorescence on a paper screen.

Fig. 2.
Fig. 2.

(a) FWM peaks as observed at the two interfaces aTs and sTa. The dashed line is just to guide the eye the scatter of the obtained experimental FWM data showing the symmetry of the FWM signal; (b) the variation of the FWM intensity as the fused silica slide is moved across the focal spot of the lens.

Fig. 3.
Fig. 3.

(a) A 3-D plot showing the FWM spectra at various positions in the silica slide; (b) The spectra plotted as a 2D plot of spectra vs position of the slide.

Fig. 4.
Fig. 4.

(a) The dotted curve showing spectral profile of IR fundamental used for the study before focusing into the slide and solid line is the modified spectral profile of the fundamental while the focus is at sTa interface of the slide; (b) open circles and diamonds are the experimental data whereas the solid lines show the simulated curves for wave-mixing at aTs and sTa interfaces respectively taking into account the wave-mixing of all the spectral components present in the fundamental when the spectrometer slit at d1.

Tables (1)

Tables Icon

Table 1. Summary of the theoretical predictions for explaining the observed peak shift of FWM signal at the aTs and sTa.

Metrics