Abstract

We first time prepared Nd3+ ions doped anodic aluminum oxide (Nd:AAO) templates, reported linear, sublinear and superlinear photoluminescence (PL) from Nd:AAO templates loaded with Ag nanowires in different excitation power regions, in which, the excitation laser with wavelength 805 nm resonantly pumped the population to 4F5/2 states of Nd3+, and the radiative transitions 4F3/24I9/2 of Nd3+ centered at 880 nm. The excitation power dependences of emission polarization ratio and the spectral width were also investigated. The observed nonlinear amplifications of the PL intensity implied strong interaction between randomly-dispersed Nd3+ ions and ordered-arrayed Ag nanowires in AAO templates.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  2. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
    [CrossRef]
  3. D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).
    [CrossRef]
  4. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
    [CrossRef] [PubMed]
  5. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef] [PubMed]
  6. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
    [CrossRef] [PubMed]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef] [PubMed]
  8. P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling Model," J. Phys. Chem. B 110, 18243-18253 (2006).
    [CrossRef] [PubMed]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  10. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
    [CrossRef] [PubMed]
  11. P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
    [CrossRef] [PubMed]
  12. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
    [CrossRef] [PubMed]
  13. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
    [CrossRef]
  14. J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
    [CrossRef]
  15. C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
    [CrossRef]
  16. J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
    [CrossRef]
  17. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, "Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex," Opt. Lett. 32, 2125-2127 (2007).
    [CrossRef] [PubMed]
  18. M. T. Cheng, S. D. Liu, and Q. Q. Wang, "Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod," Appl. Phys. Lett. 92, 162107 (2008).
    [CrossRef]
  19. S. D. Liu, M. T. Cheng, Z. J. Yang, and Q. Q. Wang, "Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter," Opt. Lett. 33, 851-853 (2008).
    [CrossRef] [PubMed]
  20. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
    [CrossRef]
  21. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  22. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
    [CrossRef] [PubMed]
  23. R. M. Dickson, and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
    [CrossRef]
  24. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  25. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
    [CrossRef] [PubMed]
  26. W. Zhang, A. O. Govorov and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect," Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef] [PubMed]
  27. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
    [CrossRef]
  28. K. Imura, T. Nagahara, and H. Okamoto, "Plasmon mode imaging of single gold nanorods," J. Am. Chem. Soc. 126, 12730-12731 (2004).
    [CrossRef] [PubMed]
  29. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  30. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
    [CrossRef]
  31. V. V. Temnov and U. Woggon, "Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity," Phys. Rev. Lett. 95, 243602 (2005).
    [CrossRef] [PubMed]
  32. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
    [CrossRef]
  33. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
    [CrossRef] [PubMed]

2008 (4)

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

M. T. Cheng, S. D. Liu, and Q. Q. Wang, "Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod," Appl. Phys. Lett. 92, 162107 (2008).
[CrossRef]

S. D. Liu, M. T. Cheng, Z. J. Yang, and Q. Q. Wang, "Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter," Opt. Lett. 33, 851-853 (2008).
[CrossRef] [PubMed]

2007 (7)

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, "Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex," Opt. Lett. 32, 2125-2127 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

2006 (7)

P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling Model," J. Phys. Chem. B 110, 18243-18253 (2006).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

2005 (6)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

V. V. Temnov and U. Woggon, "Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity," Phys. Rev. Lett. 95, 243602 (2005).
[CrossRef] [PubMed]

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

2004 (4)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, "Plasmon mode imaging of single gold nanorods," J. Am. Chem. Soc. 126, 12730-12731 (2004).
[CrossRef] [PubMed]

2003 (1)

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

2000 (2)

R. M. Dickson, and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

1997 (1)

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Bartal, G.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Bryant, G. W.

W. Zhang, A. O. Govorov and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Chen, D. J.

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Cheng, M. T.

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
[CrossRef]

Dickson, R. M.

R. M. Dickson, and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

Ding, S.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Duan, S

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Eisler, H. -J.

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling Model," J. Phys. Chem. B 110, 18243-18253 (2006).
[CrossRef] [PubMed]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling Model," J. Phys. Chem. B 110, 18243-18253 (2006).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Feng, J. Y.

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Genov, D. A.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

Gillet, P.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Gong, H. M.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

Govorov, A. O.

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Guo, D. L.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

Han, J. B.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

Han, Y. B.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Hao, Z. H.

Hecht, B.

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, "Plasmon mode imaging of single gold nanorods," J. Am. Chem. Soc. 126, 12730-12731 (2004).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling Model," J. Phys. Chem. B 110, 18243-18253 (2006).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Kobayashi, T.

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Ledoux, G.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Lemelle, L.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).
[CrossRef]

Liu, S. D.

Louis, C.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Lyon, L. A.

R. M. Dickson, and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Morimoto, A.

Mühlschlegel, P.

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, "Plasmon mode imaging of single gold nanorods," J. Am. Chem. Soc. 126, 12730-12731 (2004).
[CrossRef] [PubMed]

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

O’Reilly, E. P.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, "Plasmon mode imaging of single gold nanorods," J. Am. Chem. Soc. 126, 12730-12731 (2004).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

Perriat, P.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

Protsenko, I. E.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

Ren, J. J.

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

Roux, S.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Samoilov, V. N.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Takahara, J.

Taki, H.

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

V. V. Temnov and U. Woggon, "Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity," Phys. Rev. Lett. 95, 243602 (2005).
[CrossRef] [PubMed]

Tillement, O.

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

Uskov, A. V.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

W., X.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Wang, Q. Q.

M. T. Cheng, S. D. Liu, and Q. Q. Wang, "Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod," Appl. Phys. Lett. 92, 162107 (2008).
[CrossRef]

S. D. Liu, M. T. Cheng, Z. J. Yang, and Q. Q. Wang, "Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter," Opt. Lett. 33, 851-853 (2008).
[CrossRef] [PubMed]

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, "Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex," Opt. Lett. 32, 2125-2127 (2007).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

V. V. Temnov and U. Woggon, "Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity," Phys. Rev. Lett. 95, 243602 (2005).
[CrossRef] [PubMed]

Xia, Y.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

Xiao, S.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

Xiong, G. G.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Yamagishi, S.

Yan, J. Y.

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Yang, Z. J.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

Zaimidoroga, O. A.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Zhang, W.

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Zhang, X.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

Zhao, X. G.

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Zhao, X. J.

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

Zhou, H. J.

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, "Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex," Opt. Lett. 32, 2125-2127 (2007).
[CrossRef] [PubMed]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, "Linear and nonlinear optical properties of Ag nanowire polarizing glass," Adv. Funct. Mater. 16, 2405-2408 (2006).
[CrossRef]

Adv. Mater. (1)

C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement, P. Perriat, "Gold nano-antennas for increasing luminescence," Adv. Mater. 16, 2163-2166 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

M. T. Cheng, S. D. Liu, and Q. Q. Wang, "Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod," Appl. Phys. Lett. 92, 162107 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Imura, T. Nagahara, and H. Okamoto, "Plasmon mode imaging of single gold nanorods," J. Am. Chem. Soc. 126, 12730-12731 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

J. Phys. Chem. B (2)

P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling Model," J. Phys. Chem. B 110, 18243-18253 (2006).
[CrossRef] [PubMed]

R. M. Dickson, and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

Nano Lett. (5)

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006).
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, "Observation of stimulated emission of surface plasmon polaritons," Nano Lett. (2008), 10.1021/nl802603r (to be published).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W., "Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region," Nano Lett. 7, 723-728 (2007).
[CrossRef] [PubMed]

Nat. Photon. (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).
[CrossRef]

Nat. Phys. (1)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007).
[CrossRef]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Phys. Rev. B (3)

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von. Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
[CrossRef]

J. Y. Yan, W. Zhang, S Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

W. Zhang, A. O. Govorov and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, "Exciton-Plasmon-Photon conversion in plasmonic nanostructures," Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

V. V. Temnov and U. Woggon, "Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity," Phys. Rev. Lett. 95, 243602 (2005).
[CrossRef] [PubMed]

Science (1)

P. Mühlschlegel, H. -J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 -1609 (2005).
[CrossRef] [PubMed]

Science. (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science. 290, 314-317 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Nanostructures and absorption spectra of Ag/Nd:AAO (all the samples in this study were annealed 4 hours in N2 atmosphere at 600°C). (a) SEM of Nd:AAO template. (b) SEM image of Ag NWs embedded in Nd:AAO. (c) TEM image of a single Ag NWs. The Ag NWs have an average diameter of ~80 nm and a separation of ~30 nm. (d) Electron diffraction pattern of a single Ag NW. (e) The absorption spectra of Ag/Nd:AAO sample and Nd:AAO template. The absorption peak around 460 nm is attributed to TSP of Ag NW arrays.

Fig. 2.
Fig. 2.

Excitation and recoding of PL from Ag/Nd:AAO sample and Nd:AAO template. (a) Illustration of excitation and recording of PL in transmittance mode. (b) PL spectra of Nd:AAO template and Ag/Nd:AAO sample with excitation wavelength λ exc=805 nm (P exc=5 mW). The PL peak around 870~880 nm is attributed to the radiative transitions 4F5/24I3/2 of Nd3+. (c) PL excitation (PLE) spectrum of Ag/Nd:AAO recorded at the emission wavelength λ emi=900 nm (P exc=60 mW). Two peaks around 750 and 805 nm in PLE are corresponding to the metastates 4F7/2 and 4F5/2 of Nd3+.

Fig. 3.
Fig. 3.

Excitation power dependence of PL. (a) PL spectra from Ag/Nd:AAO with P exc=60, 80 and 100 mW. As P exc increases from 80 to 100 mW, the peak intensity increases ~50% while the spectral width decreases ~12%. (b) Peak PL intensity (leakage SPs) at λ emi=872 nm as a function of excitation power. The SPs in Ag nanocavity arrays are linearly (ν 1=0.92), sublinearly (ν 2=0.52), stimulated (ν 3=3.4) and avalanched (ν 4=8.1) amplified in the region I, II, III and IV. The threshold power for the region II, III and IV are P C2=33 mW, P C3=84 mW and P C4=115 mW, respectively.

Fig. 4.
Fig. 4.

Polarization behaviors of output PL. (a) Polarization distribution of output PL with excitation power P exc=20 and 90 mW. (b) Polarization factor r p as a function of P exc. The value of r p is around 0 in region I, approximately linearly increases in region II, reaches the maximum 0.082 in region III and dramatically decreases to the negative in region IV.

Metrics