Abstract

A combination of spatial interference patterns and spectral interferometry are used to find the global phase for non-collinear two-dimensional Fourier-transform (2DFT) spectra. Results are compared with those using the spectrally resolved transient absorption (STRA) method to find the global phase when excitation is with co-linear polarization. Additionally cross-linear polarized 2DFT spectra are correctly “phased” using the all-optical technique, where the SRTA is not applicable.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukamel, "Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations," Annu. Rev. Phys. Chem. 51, 691-729 (2000).
    [CrossRef] [PubMed]
  2. D. M. Jonas, "Two-dimensional femtosecond spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).
    [CrossRef] [PubMed]
  3. M. Cho, "Coherent two-dimensional optical spectroscopy," Chem. Rev. 108,1331-1418 (2008).
    [CrossRef] [PubMed]
  4. R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Oxford, 1987).
  5. P. Hamm, M. H. Lim, and R. M. Hochstrasser, "Structure of the Amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy," J. Phys. Chem. B 102, 6123-6138 (1998).
    [CrossRef]
  6. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
    [CrossRef]
  7. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes," Proc. Natl. Sci. USA 97, 8219-8224 (2000).
    [CrossRef]
  8. O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
    [CrossRef] [PubMed]
  9. L. Lepetit, G. Chériaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  10. L. Lepetit and M. Joffre, "Two-dimensional nonlinear optics using Fourier-transform spectral interferometry," Opt. Lett. 21, 564-566 (1996).
    [CrossRef] [PubMed]
  11. J. D. Hybl, A. W. Albrecht Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115, 6606-6622 (2001).
    [CrossRef]
  12. N. Belabas and M. Joffre, "Visible-infrared two-dimensional Fourier-transform spectroscopy," Opt. Lett. 27, 2043-2045 (2003).
    [CrossRef]
  13. T. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 13, 7432-7441 (2005).
    [CrossRef] [PubMed]
  14. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes," Chem. Phys. Lett. 386, 184-189 (2004).
    [CrossRef]
  15. T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 29, 884-886 (2004).
    [CrossRef] [PubMed]
  16. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
    [CrossRef] [PubMed]
  17. E. M. Grumstrup, S. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 15, 16681-16689 (2007).
    [CrossRef] [PubMed]
  18. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
    [CrossRef]
  19. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
    [CrossRef] [PubMed]
  20. V. Volkov, R. Schanz, and P. Hamm, "Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy," Opt. Lett. 30, 2010-2012 (2005).
    [CrossRef] [PubMed]
  21. D. Keusters, H.-S. Tan, and W. S. Warren, "Role of phase and direction in two-dimensional optical spectroscopy," J. Phys. Chem. A 103, 10369-10380 (1999).
    [CrossRef]
  22. M. Khalil, N. Demirdoven, and A. Tokmakoff, "Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra," Phys. Rev. Lett. 90, 047401 (2003).
    [CrossRef] [PubMed]
  23. X. Li. T. Zhang, C. N. Borca, and S. T. Cundiff, "Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy," Phys. Rev. Lett. 96, 057406 (2006).
    [CrossRef] [PubMed]
  24. T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
    [CrossRef]
  25. L. Yang and S. Mukamel, "Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum-wells," Phys. Rev. Lett. 100, 057402 (2008).
    [CrossRef] [PubMed]
  26. L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
    [CrossRef]
  27. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. F. Carlsson, K. R. Hagan, R. Jimenez, and S. T. Cundiff, to be published.
  28. I. Kutnetsova, T. Meier, and P. Thomas, private communication.
  29. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, "On the phasing problem of heterodyne-detected two-dimensional infrared spectroscopy," accepted for publication in Opt. Lett.

2008 (2)

M. Cho, "Coherent two-dimensional optical spectroscopy," Chem. Rev. 108,1331-1418 (2008).
[CrossRef] [PubMed]

L. Yang and S. Mukamel, "Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum-wells," Phys. Rev. Lett. 100, 057402 (2008).
[CrossRef] [PubMed]

2007 (5)

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
[CrossRef]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

E. M. Grumstrup, S. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 15, 16681-16689 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
[CrossRef]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
[CrossRef] [PubMed]

2006 (1)

X. Li. T. Zhang, C. N. Borca, and S. T. Cundiff, "Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy," Phys. Rev. Lett. 96, 057406 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes," Chem. Phys. Lett. 386, 184-189 (2004).
[CrossRef]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 29, 884-886 (2004).
[CrossRef] [PubMed]

2003 (4)

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

D. M. Jonas, "Two-dimensional femtosecond spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, "Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra," Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

N. Belabas and M. Joffre, "Visible-infrared two-dimensional Fourier-transform spectroscopy," Opt. Lett. 27, 2043-2045 (2003).
[CrossRef]

2001 (2)

J. D. Hybl, A. W. Albrecht Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

2000 (2)

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes," Proc. Natl. Sci. USA 97, 8219-8224 (2000).
[CrossRef]

S. Mukamel, "Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations," Annu. Rev. Phys. Chem. 51, 691-729 (2000).
[CrossRef] [PubMed]

1999 (1)

D. Keusters, H.-S. Tan, and W. S. Warren, "Role of phase and direction in two-dimensional optical spectroscopy," J. Phys. Chem. A 103, 10369-10380 (1999).
[CrossRef]

1998 (2)

P. Hamm, M. H. Lim, and R. M. Hochstrasser, "Structure of the Amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy," J. Phys. Chem. B 102, 6123-6138 (1998).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

1996 (1)

1995 (1)

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

Albrecht Ferro, A. W.

J. D. Hybl, A. W. Albrecht Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

Asplund, M. C.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes," Proc. Natl. Sci. USA 97, 8219-8224 (2000).
[CrossRef]

Belabas, N.

Borca, C. N.

Brixner, T.

Chériaux, G.

Cho, M.

M. Cho, "Coherent two-dimensional optical spectroscopy," Chem. Rev. 108,1331-1418 (2008).
[CrossRef] [PubMed]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes," Chem. Phys. Lett. 386, 184-189 (2004).
[CrossRef]

Cundiff, S. T.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
[CrossRef]

T. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 13, 7432-7441 (2005).
[CrossRef] [PubMed]

Damrauer, N. H.

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, "Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra," Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

Demirdöven, N.

O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

Fleming, G. R.

Gallagher Faeder, S. M.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

Golonzka, O.

O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

Grumstrup, E. M.

Hamm, P.

V. Volkov, R. Schanz, and P. Hamm, "Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy," Opt. Lett. 30, 2010-2012 (2005).
[CrossRef] [PubMed]

P. Hamm, M. H. Lim, and R. M. Hochstrasser, "Structure of the Amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy," J. Phys. Chem. B 102, 6123-6138 (1998).
[CrossRef]

Hochstrasser, R. M.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes," Proc. Natl. Sci. USA 97, 8219-8224 (2000).
[CrossRef]

P. Hamm, M. H. Lim, and R. M. Hochstrasser, "Structure of the Amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy," J. Phys. Chem. B 102, 6123-6138 (1998).
[CrossRef]

Hornung, T.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
[CrossRef] [PubMed]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

Joffre, M.

Jonas, D. M.

D. M. Jonas, "Two-dimensional femtosecond spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef] [PubMed]

J. D. Hybl, A. W. Albrecht Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, "Role of phase and direction in two-dimensional optical spectroscopy," J. Phys. Chem. A 103, 10369-10380 (1999).
[CrossRef]

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, "Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra," Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

Kuznetsova, I.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

Lepetit, L.

Li, X.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

X. Li. T. Zhang, C. N. Borca, and S. T. Cundiff, "Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy," Phys. Rev. Lett. 96, 057406 (2006).
[CrossRef] [PubMed]

T. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 13, 7432-7441 (2005).
[CrossRef] [PubMed]

Lim, M. H.

P. Hamm, M. H. Lim, and R. M. Hochstrasser, "Structure of the Amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy," J. Phys. Chem. B 102, 6123-6138 (1998).
[CrossRef]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
[CrossRef]

Meier, T.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes," Chem. Phys. Lett. 386, 184-189 (2004).
[CrossRef]

Mirin, R. P.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

Montgomery, M. A.

Mukamel, S.

L. Yang and S. Mukamel, "Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum-wells," Phys. Rev. Lett. 100, 057402 (2008).
[CrossRef] [PubMed]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
[CrossRef]

S. Mukamel, "Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations," Annu. Rev. Phys. Chem. 51, 691-729 (2000).
[CrossRef] [PubMed]

Nelson, K. A.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
[CrossRef] [PubMed]

Ogilvie, J. P.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes," Chem. Phys. Lett. 386, 184-189 (2004).
[CrossRef]

Schanz, R.

Schweigert, I. V.

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
[CrossRef]

Shim, S.

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
[CrossRef]

Stiopkin, I. V.

Stone, K. W.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
[CrossRef] [PubMed]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
[CrossRef]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

Tan, H.-S.

D. Keusters, H.-S. Tan, and W. S. Warren, "Role of phase and direction in two-dimensional optical spectroscopy," J. Phys. Chem. A 103, 10369-10380 (1999).
[CrossRef]

Thomas, P.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

M. Khalil, N. Demirdoven, and A. Tokmakoff, "Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra," Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

Vaughan, J. C.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
[CrossRef] [PubMed]

Volkov, V.

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, "Role of phase and direction in two-dimensional optical spectroscopy," J. Phys. Chem. A 103, 10369-10380 (1999).
[CrossRef]

Yang, L.

L. Yang and S. Mukamel, "Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum-wells," Phys. Rev. Lett. 100, 057402 (2008).
[CrossRef] [PubMed]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
[CrossRef]

Zanni, M. T.

E. M. Grumstrup, S. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 15, 16681-16689 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
[CrossRef]

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes," Proc. Natl. Sci. USA 97, 8219-8224 (2000).
[CrossRef]

Zhang, T.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

T. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 13, 7432-7441 (2005).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (2)

S. Mukamel, "Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations," Annu. Rev. Phys. Chem. 51, 691-729 (2000).
[CrossRef] [PubMed]

D. M. Jonas, "Two-dimensional femtosecond spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes," Chem. Phys. Lett. 386, 184-189 (2004).
[CrossRef]

Chem. Rev. (1)

M. Cho, "Coherent two-dimensional optical spectroscopy," Chem. Rev. 108,1331-1418 (2008).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. D. Hybl, A. W. Albrecht Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

D. Keusters, H.-S. Tan, and W. S. Warren, "Role of phase and direction in two-dimensional optical spectroscopy," J. Phys. Chem. A 103, 10369-10380 (1999).
[CrossRef]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy, J. Phys. Chem. A 111, 4873-4883 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

P. Hamm, M. H. Lim, and R. M. Hochstrasser, "Structure of the Amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy," J. Phys. Chem. B 102, 6123-6138 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (1)

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, "Two-dimensional optical spectroscopy of excitons in semiconductor quantum-wells: Louiville-space pathway analysis," Phys. Rev. B 75, 125302 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

L. Yang and S. Mukamel, "Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum-wells," Phys. Rev. Lett. 100, 057402 (2008).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, "Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra," Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

X. Li. T. Zhang, C. N. Borca, and S. T. Cundiff, "Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy," Phys. Rev. Lett. 96, 057406 (2006).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, "Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy," Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

Proc. Natl. Sci. USA (3)

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes," Proc. Natl. Sci. USA 97, 8219-8224 (2000).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and applications of this technology to the human islet amyloid polypeptide, Proc. Natl. Sci. USA 104, 14197-14202 (2007).
[CrossRef]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, "Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors," Proc. Natl. Sci. USA 104, 14227-14232 (2007).
[CrossRef]

Science (1)

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

Other (4)

R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Oxford, 1987).

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. F. Carlsson, K. R. Hagan, R. Jimenez, and S. T. Cundiff, to be published.

I. Kutnetsova, T. Meier, and P. Thomas, private communication.

E. H. G. Backus, S. Garrett-Roe, and P. Hamm, "On the phasing problem of heterodyne-detected two-dimensional infrared spectroscopy," accepted for publication in Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the experimental setup. Pulse A is the conjugate pulse compared to pulses B and C. (Tr=tracer beam, ref=reference beam, BS=beamsplitter, M=mirror and PZT-M=piezoelectric transducer mounted mirror.) Various images of the replica focus are shown in (b), (d) and (f), and are modeled in (c), (e) and (g) for comparison.

Fig. 2.
Fig. 2.

(a) Linear absorption for MQW sample, plus the excitation laser spectrum. (b) Interference term for the SI between TFWM and reference. (c) Measured (black dots) and retrieved (red line) TFWM spectra. (d) Retrieved spectral phase from the SI.

Fig. 3.
Fig. 3.

SRTA measurement accompanied by the phase rotated complex TFWM spectrum.

Fig. 4.
Fig. 4.

(a) Field correlation between beams A and B: measured points are black dots which are fit with a sine wave and a Gaussian envelope. (b) Lineouts of patterns between pulses A and B (black dots), and pulses C and Tr (blue dots). Both are fit with a sine wave to find the phase.

Fig. 5.
Fig. 5.

The tracer-reference SI measurement: (a) the interferometric term, (b) the inverse Fourier transform of the interferogram (with and without truncation), (c) the retrieved spectrum of the tracer and (d) the retrieved spectral phase (black dots) with its modeled phase (red line).

Fig. 6.
Fig. 6.

Co-linear polarized SI (ω τ ,T,ω t ) 2DFT spectra with T=200 fs. Panels (a) and (b) show the real and imaginary part phased by the SRTA technique. Panels (c) and (d) are the same but phased using the all-optical method.

Fig. 7.
Fig. 7.

(a) Real and (b) imaginary parts of the cross-linear 2DFT spectrum for T=0 fs.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ̂ ( 3 ) ( ω D ) = χ ( 3 ) ( ω D ; ω 1 , ω 2 , ω 3 ) E ̂ 1 ( ω 1 ) E ̂ 2 ( ω 2 ) E ̂ 3 ( ω 3 ) d ω 1 d ω 2 d ω 3 ,
E ̂ ( ω ) = E ˜ A ( ω ) e i k A · r e i ω τ A e i ϕ A + E ˜ B ( ω ) e i k B · r e i ω τ B e i ϕ B + E ˜ C ( ω ) e i k C · r e i ω τ C e i ϕ C ,
P ̂ k A + k B + k C ( 3 ) ( ω ) χ ̂ ( 3 ) ( ω D ; ω 1 , ω 2 , ω 3 ) E ˜ ( ω ) 2 E ˜ ( ω ) e i ω ( τ A + τ B + τ C ) e i ( ϕ A + ϕ B + ϕ C ) .
I = E ̂ S + E ̂ R 2 = E ̂ S 2 + E ̂ R 2 + E ̂ S E ̂ R * + E ̂ S * E ̂ R .
S SR ( ω ) = χ ̂ ( 3 ) ( ω D ; ω 1 , ω 2 , ω 3 ) E ˜ ( ω ) 4 e i ω ( τ A + τ B + τ C τ R ) e i ( ϕ A + ϕ B + ϕ C ϕ R )
ϕ P ( 3 ) = ϕ SR ( ϕ A + ϕ B + ϕ C ϕ R ) .
S TR ( ω ) = E ˜ ( ω ) 2 e i ω ( τ T + τ R ) e i ( ϕ T ϕ R ) ,
ϕ TR = ϕ T ϕ R .
ϕ P ( 3 ) = ϕ SR ϕ CAM ϕ TR ,

Metrics