Abstract

We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP31 in hollow-core photonic crystal fibers. The reproducibility of the coupling allows direct comparison of the losses of different guided modes in both hollow-core bandgap and kagome-lattice photonic crystal fibers. Our results are also relevant to applications in which the intensity distribution of the light inside the fiber is important, such as particle- or atom-guidance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-12-4729.
    [CrossRef]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
    [CrossRef] [PubMed]
  3. F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Opt. Lett. 31, 3574-3576 (2006),
    [CrossRef] [PubMed]
  4. A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7713.
    [CrossRef] [PubMed]
  5. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express 15, 12680-12685 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-12680.
    [CrossRef] [PubMed]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434488-491 (2005), http://www.nature.com/nature/journal/v434/n7032/abs/nature03349.html.
    [CrossRef] [PubMed]
  7. F. Benabid, J. C. Knight, and P. St. J. Russell, "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Express 10, 1195-1203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1195.
    [PubMed]
  8. F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5694.
    [CrossRef] [PubMed]
  9. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
    [CrossRef] [PubMed]
  10. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell. Sys. Tech. J. 43, 1783-1809 (1964).
  11. A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, "Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CThV3.
  12. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures," Opt. Express 15, 13404-13414 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13404.
    [CrossRef] [PubMed]
  13. V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Programmable complex field coupling to higher-order guided modes of micro-structured fibres," Opt. Commun. 232, 229-237 (2004), doi:10.1016/j.optcom.2003.12.075.
    [CrossRef]
  14. T. Pfeifer, R. Kemmer, R. Spitzenpfeil, D. Walter, C. Winterfeldt, G. Gerber, and C. Spielmann, "Spatial control of high-harmonic generation in hollow fibers," Opt. Lett. 30, 1497-1499 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1497.
    [CrossRef] [PubMed]
  15. D. Walter, T. Pfeifer, C. Winterfeldt, R. Kemmer, R. Spitzenpfeil, G. Gerber, and C. Spielmann, "Adaptive spatial control of fiber modes and their excitation for high-harmonic generation," Opt. Express 14, 3433-3442 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3433.
    [CrossRef] [PubMed]
  16. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
    [CrossRef]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002), doi:10.1016/S0030-4018(02)01524-9.
    [CrossRef]
  18. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12497.
    [CrossRef] [PubMed]
  19. G. Whyte and J. Courtial, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm," New J. Phys. 7, 1-12 (2005), doi:10.1088/1367-2630/7/1/117.
    [CrossRef]
  20. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
    [CrossRef] [PubMed]
  21. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres," Opt. Express 16, 5642-5648 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5642.
    [CrossRef] [PubMed]
  22. M. J. Booth, "Adaptive optics in microscopy," Philos. Trans. R. Soc. London, Ser. A 365, 2829-2843 (2007), doi:10.1098/rsta.2007.0013.
    [CrossRef] [PubMed]

2008 (1)

2007 (4)

2006 (6)

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

D. Walter, T. Pfeifer, C. Winterfeldt, R. Kemmer, R. Spitzenpfeil, G. Gerber, and C. Spielmann, "Adaptive spatial control of fiber modes and their excitation for high-harmonic generation," Opt. Express 14, 3433-3442 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3433.
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-12-4729.
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Opt. Lett. 31, 3574-3576 (2006),
[CrossRef] [PubMed]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12497.
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

2005 (4)

G. Whyte and J. Courtial, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm," New J. Phys. 7, 1-12 (2005), doi:10.1088/1367-2630/7/1/117.
[CrossRef]

F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5694.
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434488-491 (2005), http://www.nature.com/nature/journal/v434/n7032/abs/nature03349.html.
[CrossRef] [PubMed]

T. Pfeifer, R. Kemmer, R. Spitzenpfeil, D. Walter, C. Winterfeldt, G. Gerber, and C. Spielmann, "Spatial control of high-harmonic generation in hollow fibers," Opt. Lett. 30, 1497-1499 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1497.
[CrossRef] [PubMed]

2004 (1)

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Programmable complex field coupling to higher-order guided modes of micro-structured fibres," Opt. Commun. 232, 229-237 (2004), doi:10.1016/j.optcom.2003.12.075.
[CrossRef]

2002 (2)

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
[CrossRef]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell. Sys. Tech. J. 43, 1783-1809 (1964).

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Argyros, A.

Benabid, F.

Bhagwat, A. R.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Biener, G.

Bird, D. M.

Birks, T. A.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434488-491 (2005), http://www.nature.com/nature/journal/v434/n7032/abs/nature03349.html.
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Booth, M. J.

M. J. Booth, "Adaptive optics in microscopy," Philos. Trans. R. Soc. London, Ser. A 365, 2829-2843 (2007), doi:10.1098/rsta.2007.0013.
[CrossRef] [PubMed]

Burger, S.

Couny, F.

Courtial, J.

G. Whyte and J. Courtial, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm," New J. Phys. 7, 1-12 (2005), doi:10.1088/1367-2630/7/1/117.
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002), doi:10.1016/S0030-4018(02)01524-9.
[CrossRef]

Daria, V. R.

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Programmable complex field coupling to higher-order guided modes of micro-structured fibres," Opt. Commun. 232, 229-237 (2004), doi:10.1016/j.optcom.2003.12.075.
[CrossRef]

Docherty, A.

Gaeta, A. L.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Gerber, G.

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Gibson, G.

Gluckstad, J.

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Programmable complex field coupling to higher-order guided modes of micro-structured fibres," Opt. Commun. 232, 229-237 (2004), doi:10.1016/j.optcom.2003.12.075.
[CrossRef]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002), doi:10.1016/S0030-4018(02)01524-9.
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
[CrossRef]

Hasman, E.

Kemmer, R.

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Kleiner, V.

Knight, J. C.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434488-491 (2005), http://www.nature.com/nature/journal/v434/n7032/abs/nature03349.html.
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Express 10, 1195-1203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1195.
[PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002), doi:10.1016/S0030-4018(02)01524-9.
[CrossRef]

Leach, J.

Leon-Saval, S. G.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
[CrossRef]

Light, P. S.

Mangan, B. J.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell. Sys. Tech. J. 43, 1783-1809 (1964).

Miles, M.

Niv, A.

Padgett, M.

Pearce, G. J.

Pfeifer, T.

Pla, J.

Poulton, C. G.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
[CrossRef]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Robert, D.

Roberts, P. J.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Rodrigo, P. J.

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Programmable complex field coupling to higher-order guided modes of micro-structured fibres," Opt. Commun. 232, 229-237 (2004), doi:10.1016/j.optcom.2003.12.075.
[CrossRef]

Russell, P. St. J.

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express 15, 12680-12685 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-12680.
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-12-4729.
[CrossRef]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434488-491 (2005), http://www.nature.com/nature/journal/v434/n7032/abs/nature03349.html.
[CrossRef] [PubMed]

F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5694.
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Express 10, 1195-1203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1195.
[PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Sabert, H.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell. Sys. Tech. J. 43, 1783-1809 (1964).

Spielmann, C.

Spitzenpfeil, R.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
[CrossRef]

Walter, D.

Whyte, G.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12497.
[CrossRef] [PubMed]

G. Whyte and J. Courtial, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm," New J. Phys. 7, 1-12 (2005), doi:10.1088/1367-2630/7/1/117.
[CrossRef]

Wiederhecker, G. S.

Williams, D. P.

Winterfeldt, C.

Yirmiyahu, Y.

Bell. Sys. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell. Sys. Tech. J. 43, 1783-1809 (1964).

J. Lightwave Technol. (1)

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434488-491 (2005), http://www.nature.com/nature/journal/v434/n7032/abs/nature03349.html.
[CrossRef] [PubMed]

New J. Phys. (1)

G. Whyte and J. Courtial, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm," New J. Phys. 7, 1-12 (2005), doi:10.1088/1367-2630/7/1/117.
[CrossRef]

Opt. Commun. (3)

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Programmable complex field coupling to higher-order guided modes of micro-structured fibres," Opt. Commun. 232, 229-237 (2004), doi:10.1016/j.optcom.2003.12.075.
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000), doi:10.1016/S0030-4018(00)00990-1.
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002), doi:10.1016/S0030-4018(02)01524-9.
[CrossRef]

Opt. Express (9)

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12497.
[CrossRef] [PubMed]

Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures," Opt. Express 15, 13404-13414 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13404.
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Express 10, 1195-1203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1195.
[PubMed]

F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5694.
[CrossRef] [PubMed]

A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7713.
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express 15, 12680-12685 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-12680.
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7329.
[CrossRef] [PubMed]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres," Opt. Express 16, 5642-5648 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5642.
[CrossRef] [PubMed]

D. Walter, T. Pfeifer, C. Winterfeldt, R. Kemmer, R. Spitzenpfeil, G. Gerber, and C. Spielmann, "Adaptive spatial control of fiber modes and their excitation for high-harmonic generation," Opt. Express 14, 3433-3442 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3433.
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Eng. Sci. (1)

M. J. Booth, "Adaptive optics in microscopy," Philos. Trans. R. Soc. London, Ser. A 365, 2829-2843 (2007), doi:10.1098/rsta.2007.0013.
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97023603 (2006), http://link.aps.org/abstract/PRL/v97/e023603.
[CrossRef] [PubMed]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999), http://www.sciencemag.org/cgi/content/abstract/285/5433/1537.
[CrossRef] [PubMed]

Other (1)

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, "Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CThV3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up. (a) A 1064 nm laser beam is expanded 5× so as to homogeneously fill the spatial light modulator (SLM). The SLM is placed in the front Fourier plane of lens L1 (focal length 30 cm). It shapes the light beam in a volume around the back Fourier plane of lens L1. A second lens L2 (focal length 5 cm) is used to compress and collimate the modulated beam. Part of the beam is reflected to a CCD camera (CCD 1) for online monitoring of the generated intensity profiles. A 10×0.25 NA microscope objective is used to couple the beam into the sample fiber. The end-face of the fiber is imaged on to a second camera (CCD 2) using a 40×0.65 NA objective. HWP: half wave plate; P: polarizer; NDF: neutral density filter; BE: 5× beam expander; BS: beam splitter; L1 and L2: lenses; PC: computer. (b) A blazed phase grating is used to redirect the shaped beam into the +1 diffracted order, the other orders being filtered out using a Fourier-plane aperture A.

Fig. 2.
Fig. 2.

(a–c) Normalized target intensity distributions for LG01 mode (a) radial HG01 mode (b) radial and HG02 mode (c); (d–f) corresponding holograms generated by the SLM (black is 0, white is 2π); (g–i) resulting normalized intensity distribution measured by CCD1.

Fig. 3.
Fig. 3.

Micrographs and loss spectra of the fibers used in our experiments: (a) SEM of the cross-section of the HC-bandgap fiber with pitch Λ=3.2±0.1 µm and core diameter dcore= 12.0±0.2 µm; (b) loss spectrum of the fiber shown in (a); (c) optical micrograph of the near-field emerging from a 3 cm long piece of HC-kagome PCF with pitch Λ=11.9±0.2 µm and dcore=23.4±0.2 µm, illuminated from below with a halogen lamp. The thickness of the glass struts in the cladding varied between 350 and 450 nm; (d) loss spectrum of the fiber in (c); the shaded areas indicate measured bands of loss.

Fig. 4.
Fig. 4.

Normalized near-field intensity profiles measured at the end-face of a HC-kagome fiber: (a–d) 55 cm long and (e–h) after cutback to 30 cm. The excited core resonances are: (a) fundamental LP01; (b) LP11; (c) LP21; (d) LP31. The polarization state at input to the fiber is shown on the left. The yellow arrows and circles indicate the dominant polarization state at the end-face. In (b) the transmitted signal did not change significantly as the polarizer was rotated, indicating that the light was in an elliptical polarization state (indicated by the yellow circles), and in (a) linear polarization was preserved, though it rotated slowly along the fiber, being aligned horizontally in (a) and vertically in (e).

Fig. 5.
Fig. 5.

Normalized mode intensity profiles measured at the end-face of a 19 m long HC-bandgap fiber: (a) fundamental LP01 mode; (b) LG01 mode; (c,d) the corresponding normalized intensity profiles after cut-back to 3 m of fiber.

Metrics