Abstract

We consider the spectral properties of dielectric waveguides with low refractive index cores and binary layered claddings, such as Bragg fibers and integrated-ARROWs. We show that the full, nontrivial, 2-D spectrum of Bloch bands (hence bandgaps) of such claddings correspond, in structure and topology, to the dispersion properties of both constituent layer types; quantitatively demonstrating an intimate relationship between the bandgap and antiresonance guidance mechanisms. The dispersion functions of these layers, and the interactions thereof, thus form what we coin the Stratified Planar Anti-Resonant Reflecting OpticalWaveguide (SPARROW) model, capable of quantitative, analytic, descriptions of many nontrivial bandgap and antiresonance properties. The SPARROW model is useful for the spectral analysis and design of Bragg fibers and integrated-ARROWs with cores of arbitrary refractive index (equal to or less than the lowest cladding index). Both waveguide types are of interest for sensing and microfluidic applications due to their natural ability to guide light within low-index cores, permitting low-loss guidance within a large range of gases and liquids. A liquid-core Bragg fiber is discussed as an example, demonstrating the applicability of the SPARROW model to realistic and important waveguide designs.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv and C. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977).
  2. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
    [CrossRef]
  3. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Solja¡ci’c, S. Jacobs, J. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001).
  4. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
    [CrossRef]
  5. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sørensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004).
    [CrossRef]
  6. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
    [CrossRef]
  7. T. Katagiri, Y. Matsuura, and M. Miyagi, "Photonic bandgap fiber with a silica core and multilayer dielectric cladding," Opt. Lett. 29, 557-559 (2004).
    [CrossRef]
  8. T. Katagiri, Y. Matsuura, and M. Miyagi, "All-solid single-mode bragg fibers for compact fiber devices," J. Lightwave Technol. 24, 4314-4318 (2006).
    [CrossRef]
  9. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
    [CrossRef]
  10. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331-9336 (2005).
    [CrossRef]
  11. D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, "Optical characterisation of arch-shaped ARROW waveguides with liquid cores," Opt. Express 13, 10564-10570 (2005).
    [CrossRef]
  12. F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Spectral behavior of integrated antiresonant reflecting hollowcore waveguides," J. Lightwave Technol. 25, 2599-2604 (2007).
    [CrossRef]
  13. H. Schmidt and A. R. Hawkins, "Optofluidic waveguides: I. Concepts and implementations," Microfluid. Nanofluid. 4, 3-16 (2008).
    [CrossRef]
  14. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
    [CrossRef]
  15. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  16. T. Baba and Y. Kokubun, "High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer," Appl. Opt. 29, 2781-2792 (1990).
  17. T. Baba and Y. Kokubun, "Dispersion and radiations loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," J. Quantum Electron. 28, 1689-1700 (1992).
    [CrossRef]
  18. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002).
  19. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  20. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
  21. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
    [CrossRef]
  22. D. Yin, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710-2715 (2004).
    [CrossRef]
  23. K. J. Rowland, S. Afshar V., and T. M. Monro, "Novel low-loss bandgaps in all-silica Bragg fibers," J. Lightwave Technol. 26, 43-51 (2008).
    [CrossRef]
  24. F. Poli, M. Foroni, D. Giovanelli, A. Cucinotta, S. Selleri, J. B. Jensen, J. Læsgaard, A. Bjarklev, G. Vienne, C. Jakobsen, and J. Broeng, "Silica bridge impact on hollow-core Bragg fiber transmission properties," Proceedings OFC 2007 (Anaheim, California), paper OML8 (2007).
  25. T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006).
    [CrossRef]
  26. J. J. Hu, G. Ren, P. Shum, X. Yu, G. Wang, and C. Lu, "Analytical method for band structure calculation of photonic crystal fibers filled with liquid," Opt. Express 16, 6668-6674 (2008).
    [CrossRef]
  27. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., ( John Wiley & Sons, Inc., 2004).
  28. M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University Press, 2002).
  29. I. M. Bassett and A. Argyros, "Elimination of polarization degeneracy in round waveguides," Opt. Express 10, 1342-1346 (2002).
  30. A. Argyros, "Guided modes and loss in Bragg fibres," Opt. Express 10, 1411-1417 (2002).
  31. J. P. Barber, D. B. Conkey, M. M. Smith, J. R. Lee, B. A. Peeni, Z. A. George, A. R. Hawkins, D. Yin, and H. Schmidt, "Hollow waveguides on planar substrates with selectable geometry cores," Proceedings CLEO 2005 (San Jos’e, California), paper CTuD4 (2005).
  32. P. K. Tien, "Light waves in thin films and integrated optics," Appl. Opt. 10, 2395-2413 (1971).
  33. P. Viale, S. Fevrier, F Gerome, and H. Vilard, "Confinement loss computation in photonic crystal fibres using a novel perfectly matched layer design," Proceedings of the COMSOL Multiphysics user’s conference (Paris, 2005).
  34. V. Finazzi, T. M. Monro, and D. J. Richardson, "Small-core silica holey fibers: nonlinearity and confinement loss trade-offs," J. Opt. Soc. Am. B 20, 1427-1436 (2003).
    [CrossRef]
  35. J. Li and K. S. Chiang, "Disappearance of modes in planar Bragg waveguides," Opt. Lett. 32, 2369-2371 (2007).
    [CrossRef]

2008 (3)

2007 (2)

2006 (2)

2005 (2)

2004 (5)

2003 (2)

2002 (5)

2001 (1)

1999 (1)

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
[CrossRef]

1992 (1)

T. Baba and Y. Kokubun, "Dispersion and radiations loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," J. Quantum Electron. 28, 1689-1700 (1992).
[CrossRef]

1990 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

1977 (1)

1971 (1)

Abeeluck, A. K.

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
[CrossRef]

Argyros, A.

Baba, T.

T. Baba and Y. Kokubun, "Dispersion and radiations loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," J. Quantum Electron. 28, 1689-1700 (1992).
[CrossRef]

T. Baba and Y. Kokubun, "High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer," Appl. Opt. 29, 2781-2792 (1990).

Barber, J. P.

Bassett, I. M.

Bayindir, M.

Benoit, G.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
[CrossRef]

Broeng, J.

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
[CrossRef]

Chen, C.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Chiang, K. S.

Cucinotta, A.

de Sterke, C. M.

Deyerl, H.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

Engeness, T.

Fan, S.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Finazzi, V.

Fink, Y.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Foroni, M.

Hansen, T.

Hart, S. D.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Hawkins, A. R.

Headley, C.

Hong, C.

Hu, J. J.

Huang, Y.

Ibanescu, M.

Jakobsen, C.

Jensen, J.

Joannopoulos, J. D.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Johnson, S. G.

Katagiri, T.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Kokubun, Y.

T. Baba and Y. Kokubun, "Dispersion and radiations loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," J. Quantum Electron. 28, 1689-1700 (1992).
[CrossRef]

T. Baba and Y. Kokubun, "High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer," Appl. Opt. 29, 2781-2792 (1990).

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Kuriki, K.

Kuriki, Y.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
[CrossRef]

Lee, R.

Li, J.

Litchinitser, N. M.

Lu, C.

Lunt, E. J.

Matsuura, Y.

McPhedran, R. C.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Miyagi, M.

Monro, T. M.

Mortensen, N.

Pearce, G. J.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Poli, F.

Ren, G.

Richardson, D. J.

Ripin, D. J.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

Rowland, K. J.

Schmidt, H.

Selleri, S.

Shapira, O.

Shum, P.

Simonsen, H.

Skorobogatiy, M.

Sørensen, T.

Steinvurzel, P. E.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Terrel, M.

Thomas, E. L.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Tien, P. K.

Usner, B.

Vienne, G.

Viens, J. F.

Wang, G.

Weisberg, O.

White, T. P.

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Xu, Y.

Yariv, A.

Yeh, P.

Yin, D.

Yu, X.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

J. Lightwave Technol. (5)

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999).
[CrossRef]

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993).
[CrossRef]

T. Katagiri, Y. Matsuura, and M. Miyagi, "All-solid single-mode bragg fibers for compact fiber devices," J. Lightwave Technol. 24, 4314-4318 (2006).
[CrossRef]

F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Spectral behavior of integrated antiresonant reflecting hollowcore waveguides," J. Lightwave Technol. 25, 2599-2604 (2007).
[CrossRef]

K. J. Rowland, S. Afshar V., and T. M. Monro, "Novel low-loss bandgaps in all-silica Bragg fibers," J. Lightwave Technol. 26, 43-51 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

T. Baba and Y. Kokubun, "Dispersion and radiations loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," J. Quantum Electron. 28, 1689-1700 (1992).
[CrossRef]

Nanofluid. (1)

H. Schmidt and A. R. Hawkins, "Optofluidic waveguides: I. Concepts and implementations," Microfluid. Nanofluid. 4, 3-16 (2008).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Opt. Express (13)

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Solja¡ci’c, S. Jacobs, J. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001).

A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002).

I. M. Bassett and A. Argyros, "Elimination of polarization degeneracy in round waveguides," Opt. Express 10, 1342-1346 (2002).

A. Argyros, "Guided modes and loss in Bragg fibres," Opt. Express 10, 1411-1417 (2002).

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).

J. J. Hu, G. Ren, P. Shum, X. Yu, G. Wang, and C. Lu, "Analytical method for band structure calculation of photonic crystal fibers filled with liquid," Opt. Express 16, 6668-6674 (2008).
[CrossRef]

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710-2715 (2004).
[CrossRef]

G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sørensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004).
[CrossRef]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331-9336 (2005).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, "Optical characterisation of arch-shaped ARROW waveguides with liquid cores," Opt. Express 13, 10564-10570 (2005).
[CrossRef]

T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006).
[CrossRef]

Opt. Lett. (3)

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef]

Other (5)

F. Poli, M. Foroni, D. Giovanelli, A. Cucinotta, S. Selleri, J. B. Jensen, J. Læsgaard, A. Bjarklev, G. Vienne, C. Jakobsen, and J. Broeng, "Silica bridge impact on hollow-core Bragg fiber transmission properties," Proceedings OFC 2007 (Anaheim, California), paper OML8 (2007).

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., ( John Wiley & Sons, Inc., 2004).

M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University Press, 2002).

J. P. Barber, D. B. Conkey, M. M. Smith, J. R. Lee, B. A. Peeni, Z. A. George, A. R. Hawkins, D. Yin, and H. Schmidt, "Hollow waveguides on planar substrates with selectable geometry cores," Proceedings CLEO 2005 (San Jos’e, California), paper CTuD4 (2005).

P. Viale, S. Fevrier, F Gerome, and H. Vilard, "Confinement loss computation in photonic crystal fibres using a novel perfectly matched layer design," Proceedings of the COMSOL Multiphysics user’s conference (Paris, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics