Abstract

In this paper, we investigate power scalability of ytterbium-doped ultra large core photonic crystal fiber laser operating on the zero-line transition. We first report on an 80 µm core diameter ytterbium-doped rod-type photonic crystal fiber laser emitting up to 94 W in continuous wave regime when operating at 977 nm, which is to our knowledge the highest output power ever achieved from a single-mode solid-state laser operating at this wavelength. Key parameters of ytterbium-doped three-level laser, such as transparency pump intensity, pump absorption saturation, and gain competition between three and four-level laser operation are then discussed in the particular context of high power fiber laser operating at 977 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6088.
    [CrossRef] [PubMed]
  2. V. Fomin, A. Mashkin, M. Abramov, A. Ferin, V. Gapontsev, and IPG Laser GmbH Burbach Germany, "3 kW Yb fibre lasers with a single-mode output," in International Symposium on High-Power Fiber Lasers and their Applications (St. Petersburg, 2006).
  3. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32, 1551-1553 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-11-1551.
    [CrossRef] [PubMed]
  4. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-24-3495.
    [CrossRef] [PubMed]
  5. J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
    [CrossRef]
  6. L. B. Fu, M. Ibsen, D. J. Ridcharson, and D. N. Payne, "977 nm all fiber DFB laser," IEEE Phothon Technol. Lett. 16, 2442-2445 (2004).
    [CrossRef]
  7. L. A. Zenteno, J. D. Minelly, M. Dejneka, and S. Crigler, "0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG," in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper TuC8, http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-2000-TuC8.
  8. R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Ylä-Jarkko, S. A. Alam, P. W. Turner, and J. Moore, "High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980nm," Opt. Lett. 28, 1093-1095 (2003),http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1093.
    [CrossRef]
  9. K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, S. A. Alam, and A. B. Grudinin, "A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser," in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 103, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2003-103.
  10. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped single-mode three-level fiber laser," Opt. Lett. 23, 355-357 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-5-355.
    [CrossRef]
  11. K. H. Yllä Jarkko, "Advanced fiber components for optical networks," Thesis, (2004).
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
    [CrossRef]
  13. N. Deguil-Robin, J. Limpert, S. Petit, I. Manek-Hönniger, and F. Salin, "Double-Pass versus Single-Pass Fiber Amplification: A Numerical and Experimental Comparison," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper WB26, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2005-WB26.
  14. F. Röser, J. Rothhard, T. Eidam, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification systems : results, SHG and scaling potential," Proc. SPIE Photonics West 2008.

2007 (2)

2004 (2)

2003 (1)

1998 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

1989 (1)

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
[CrossRef]

Ainsly, B. J.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
[CrossRef]

Alam, S. A.

Armitage, J. R.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
[CrossRef]

Craig-Ryan, S. P.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
[CrossRef]

Eidam, T.

Ermeneux, S.

Fu, L. B.

Grudinin, A. B.

Hanna, D. C.

Ibsen, M.

L. B. Fu, M. Ibsen, D. J. Ridcharson, and D. N. Payne, "977 nm all fiber DFB laser," IEEE Phothon Technol. Lett. 16, 2442-2445 (2004).
[CrossRef]

Jang, J. N.

Jeong, Y.

Limpert, J.

Linke, S.

Minelly, J. D.

Moore, J.

Nilsson, J.

Paschotta, R.

Payne, D.

Payne, D. N.

L. B. Fu, M. Ibsen, D. J. Ridcharson, and D. N. Payne, "977 nm all fiber DFB laser," IEEE Phothon Technol. Lett. 16, 2442-2445 (2004).
[CrossRef]

Rademaker, K.

Ridcharson, D. J.

L. B. Fu, M. Ibsen, D. J. Ridcharson, and D. N. Payne, "977 nm all fiber DFB laser," IEEE Phothon Technol. Lett. 16, 2442-2445 (2004).
[CrossRef]

Röser, F.

Rothhardt, J.

Sahu, J.

Sahu, J. K.

Salin, F.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Selvas, R.

Tropper, A. C.

Tünnermann, A.

Turner, P. W.

Wyatt, R.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
[CrossRef]

Ylä-Jarkko, K. H.

Yvernault, P.

Electron. Lett. (1)

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, "Highly efficient 980 nm operation of an Yb-doped silica fiber laser," Electron. Lett. 25, 298-299 (1989).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

IEEE Phothon. Technol. Lett. (1)

L. B. Fu, M. Ibsen, D. J. Ridcharson, and D. N. Payne, "977 nm all fiber DFB laser," IEEE Phothon Technol. Lett. 16, 2442-2445 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (6)

N. Deguil-Robin, J. Limpert, S. Petit, I. Manek-Hönniger, and F. Salin, "Double-Pass versus Single-Pass Fiber Amplification: A Numerical and Experimental Comparison," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper WB26, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2005-WB26.

F. Röser, J. Rothhard, T. Eidam, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification systems : results, SHG and scaling potential," Proc. SPIE Photonics West 2008.

L. A. Zenteno, J. D. Minelly, M. Dejneka, and S. Crigler, "0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG," in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper TuC8, http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-2000-TuC8.

V. Fomin, A. Mashkin, M. Abramov, A. Ferin, V. Gapontsev, and IPG Laser GmbH Burbach Germany, "3 kW Yb fibre lasers with a single-mode output," in International Symposium on High-Power Fiber Lasers and their Applications (St. Petersburg, 2006).

K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, S. A. Alam, and A. B. Grudinin, "A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser," in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 103, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2003-103.

K. H. Yllä Jarkko, "Advanced fiber components for optical networks," Thesis, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) The three-level atomic system and (b) emission and absorption cross section of ytterbium in silica host [12].

Fig. 2.
Fig. 2.

Center region of the rod-type photonic crystal fiber used in these experiments.

Fig. 3.
Fig. 3.

Experimental set-up of the high power clad pumped three-level fiber laser. DC RTF : double clad rod-type fiber.

Fig. 4.
Fig. 4.

Output characteristic of the laser. The laser threshold is reached for 18 W of pump power and the slope efficiency is 48%. The near field beam profile at maximum output power is displayed in inset.

Fig. 5.
Fig. 5.

High resolution laser output spectrum in dB. Inset: Laser (line) and ASE (dash) spectrum in linear scale

Fig. 6.
Fig. 6.

Residual pump power (lower graph) and density of inverted population n2 (upper graph) as a function of the fiber length for a launched pump power of 230 W. The transparency pump power PtrpL, the transparency inversion ratio n2trpL, and the fiber length for 13 dB of pump absorption Labs(13 dB) are added (blue dotted line). The experimental measurements of residual pump power for different length of rod-type fibers are also displayed (blue triangle).

Fig. 7.
Fig. 7.

Simulated co- and contra-propagating residual pump power (lower graph) and population inverstion ratio n2 (upper graph) as a function of the location in the fiber for a launched pump power of 230 W. The transparency pump power PtrpL, the transparency inversion ratio n2trpL, (blue dotted line) and the population inversion ratio for a single pump pass (red dotted line) are also added.

Fig. 8.
Fig. 8.

Simulation 11 dB absorption fiber length Labs(11 dB) (upper graph) in double pump pass configuration and required losses at 1030 nm (lower graph) with respect to the fiber core diameter and technology.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I PtransL = h ν p ( σ aP σ eL σ aL σ eP ) τ fluo
n 2 transpL = σ al σ al + σ el
G 1030 = 0.25 . G 977 + 0.72 β α

Metrics